ТЕРМИТНЫЙ СТЕРЖЕНЬ И СОСТАВ ТЕРМИТНОЙ СМЕСИ Российский патент 1999 года по МПК B23K35/22 B23K23/00 

Описание патента на изобретение RU2135340C1

Изобретение относится к термитной сварке-пайке, резке и наплавке металлических конструкций из меди и ее сплавов и стали и может быть использовано для сварки-пайки, резки и наплавки металлов в быту, при ремонте техники в полевых условиях, при ведении ремонтно-спасательных работ, в условиях монтажа и демонтажа конструкций, на строительстве при ремонте сооружений и механизмов.

В различных аварийных и бытовых ситуациях необходимы простые в обращении и надежные средства для ремонта машин и оборудования. Наибольшие трудности при ремонте возникают в случаях, когда требуется сварка-пайка, резка или наплавка металла. Используемое в настоящее время сварное оборудование не является компактным. Его транспортировки требует специальной техники, для работы на нем нужны мощные источники электрической энергии или газовые баллоны, специально обученный персонал.

Известен термитный стержень и состав термитной смеси для сварки и наплавки металлической конструкции (Патент РФ N 1833272, N B 23 K 23/00, опубл. 07.08.93 г. ). Термитный стержень выполнен в виде сформированной в цилиндр термитной смеси с оболочкой из негорючего материала с температурой плавления ниже максимальной температуры горения термитной смеси, но выше температуры плавления металлоконструкции. Устройство термитного стержня позволяет обеспечить кумуляцию энергии горения термитной смеси в месте сварки, наплавки, следствием которой является возможность использования его в полевых условиях (сварки, наплавки), но реализация термитного стержня обеспечивает получение только горизонтального шва. Состав же термитной смеси выбирается в зависимости от его назначения, например, для сварки стальных изделий используют смесь порошка алюминия (23 мас.%) и железной окалины (77 мас.%) дисперсностью 0,3 - 0,6 мм и плотностью в прессованном состоянии 3,0 - 3,4 кг/м3. Для работы с медными конструкциями используют термитную смесь, содержащую 67,2 мас. % окиси меди и 32,8 мас.% химического соединения меди и алюминия. Частицы термитной смеси скрепляются добавлением в смесь связующего, например, поливинилацетатного клея и последующим формованием в виде стержня диаметром 6-8 мм и более, длиной 300 - 400 мм с запалом 6 - 8 мм. Размер стержня зависит от величины конструкции, подвергаемой сварке, наплавке. Указанный термитный стержень обеспечивает получение только горизонтального шва и не обеспечивает получение наклонных, вертикальных и тем более потолочных швов.

Известен также (Патент РФ N 2054347, кл. B 23 K 23/00, 20.02.95 г.) термитный состав для получения расплава на основе меди, содержащий бор, оксид меди и в качестве связующего смесь перхлорат полиэтиленполиамина и этиленгликоля при следующем соотношении компонентов, (мас.%):
Бор - 5 - 8
Перхлорат полиэтиленполиамина - 15 - 20
Этиленгликоль - 5 - 10
Оксид меди - Остальное
Указанный термитный состав обеспечивает лучшее качество соединения, электропроводность, прочность, однако, обеспечивает получение горизонтального шва и не может быть использован для получения наклонных, вертикальных и тем более потолочных швов.

Известен также состав термитной смеси (Ав. св. СССР 1362594, кл. B 23 K 23/00, опубл. 30.12.87 г.) для сварки металлических конструкций из меди или ее сплавов, включающий бор (4 - 9,9 мас.%), оксид меди (90,0 - 95,5 мас.%) и связующее (0,1 - 0,5 мас.%). В качестве связующего может использоваться раствор коллоксилина или фторкаучука в ацетоне или водный раствор силиката натрия. Указанный состав обеспечивает прочность сварного шва, но может использоваться только для получения горизонтальных швов.

Задачей настоящего изобретения является создание термитного стержня и состава термитной смеси, обеспечивающей более широкие технологические возможности в части получения горизонтальных, наклонных, вертикальных и потолочных швов, экономичного и безопасного при использовании.

Для решения поставленной задачи предлагается использовать термитный стержень с составом смеси, при горении которой осуществляется процесс сварки-пайки, резки, наплавки металлических конструкций в любом пространственном направлении: горизонтальном, наклонном, вертикальном.

Термитный стержень выполнен в виде сформированной в цилиндр термитной смеси с оболочкой из материала, сгорающего одновременно с составом термитной смеси. Термитная смесь, которая используется в предлагаемом термитном стержне, имеет следующий состав, мас.%:
Восстановитель (бор или металл из группы алюминий, титан, кремний, или сплавы кремния с марганцем или кальцием, или алюминием или железом или их смеси) - 6 - 30
Газогенерирующая добавка (нитрат калия, натрия, или аммония или их смеси, или смеси с органическими соединениями, например, с крахмалом или сахаром, или мочевиной или дициандиамидом) - 10 - 40
Оксид меди - Остальное
При воспламенении указанного состава протекает реакция со значительным выделением тепла. В процессе горения состава термитной смеси образуется достаточное количество тепла для сварки-пайки, наплавки, резки металлических конструкций из меди и ее сплавов и стали.

Температура продуктов сгорания равна 1500 - 2500oC. В процессе сгорания смеси образуется флюс и расплав на основе меди. При взаимодействии нагретых до высокой температуры продуктов сгорания со свариваемым материалом происходит его нагрев или подплавление и образуется сварное соединение. Одновременно, за счет газогенерирующей добавки в термитной смеси и оболочки образуется направленная газовая струя (тепловой поток). Он определяется прежде всего качественным составом компонентов газогенерирующей добавки и их количественным соотношением, которое совместно с восстановителем и оксидом меди обеспечивают давление газовой струи и скорость горения состава, необходимые для образования сварного шва в любом пространственном положении. Оболочка, сгорая одновременно с термитной смесью, обеспечивает создание формы пламени, образующегося при сгорании термитного стержня. Введение в состав термитной смеси оксидов никеля, олова, марганца, железа и хрома до 30 мас.% или металлов никеля, олова, марганца до 15 мас.% позволяет получать в процессе горения термитного стержня заданные припои на основе меди. Регулирование растекаемости получаемого припоя осуществляется добавлением флюсов до 10 мас.% (см. таблицу 1). Термитный стержень предлагаемого состава отработан в опытном производстве, проверен на работоспособность в лабораторно-стендовых условиях.

Нижеследующие примеры и прилагаемый рисунок (фиг. 1) поясняют предлагаемое изобретение. На рисунке (фиг. 1) изображен термитный стержень, который состоит из сгораемой оболочки с пыжом 1, термитный смеси 2, стопина 3 и термодержателя 4.

Пример 1. Для испытания были изготовлены термитные стержни, в которых использовались варианты термитной смеси (см. таблицы 1 и 2).

Из бумаги (70 г/м2) склеивалась двухосновная трубка с внутренним диаметром 10 мм, длиной 55 мм, на глубине 15 мм от торца вклеивания пыж. Оболочка заполняется термитной смесью. В полую часть стержня вставлялся термодержатель длиной 100 мм. Термически стержень устанавливается вертикально. Над ним на расстоянии 10 мм от верхнего среза горизонтально закрепляется предварительно взвешенная стальная пластина толщиной 1 мм с размером 70х70 мм. Состав поджигается раскаленной спиралью с верхнего конца. После сгорания образца пластина снимается. С нее отбиваются шлаки и по разнице масс до и после испытания определяется количество наплавленного металла. Так производилась оценка массы наплавки (см. табл. 1). Данная методика имитирует потолочный шов.

Пример 2. Процесс сварки-пайки производился следующим образом. На кирпич вертикально или горизонтально устанавливаются внахлест или встык две металлические пластины, термитный стержень поджигается, подносится к началу будущего шва на расстояние нескольких миллиметров к поверхности соединяемых деталей и плавно перемещается вдоль шва по мере его заплавления образующимся сплавом. После остывания деталей с них отбивали образовавшиеся шлаки и замеряли длину шва. Результаты испытаний представлены в таблице 2.

Для оценки качества сварки-пайки из сваренных пластин вырезали образцы размером 70х70 мм, которые испытывали на растяжение или разрыв. Все образцы показали один и тот же результат - разрыв шва был по металлу.

Таким образом, предлагаемый термитный стержень с использованием указанного состава обеспечивает следующие преимущества:
- получение сварки-пайки, резки и наплавки металлических конструкций из меди и ее сплавов и стали в различных пространственных направлениях: горизонтальной, наклонной, вертикальной.

- безопасность при изготовлении термитного стержня и его эксплуатации.

За счет отсутствия воспламенительной головки, обладающей высокой чувствительностью к трению (3-й класс) и удару (5-й класс), используемый термитный состав обладает низкой чувствительностью к механическому воздействию: к удару на уровне 11-го класс опасности, а к трению - 13-го класса. Предлагаемый термитный стержень энерогонезависим от внешних источников, что обеспечивает его экономичность.

Похожие патенты RU2135340C1

название год авторы номер документа
СПОСОБ ТЕРМИТНОЙ СВАРКИ 2004
  • Шкода Анатолий Карпович
RU2274532C1
ТЕРМИТНЫЙ СОСТАВ (ВАРИАНТЫ) 1993
  • Румянцев В.Н.
  • Карташов Ю.И.
  • Коваль А.И.
  • Фоменко В.В.
  • Градусов С.П.
  • Бурова Л.Г.
  • Лебедев В.Г.
  • Кудинов Д.В.
  • Буюкли И.М.
  • Чуяс Ю.А.
RU2054347C1
ПОРТАТИВНОЕ УСТРОЙСТВО ДЛЯ ТЕРМИТНОЙ СВАРКИ 2000
  • Гаспарян Ю.Б.
  • Сычев В.В.
  • Моисеев В.Г.
RU2174459C1
СПОСОБ ТЕРМИТНОЙ СВАРКИ 2000
  • Гаспарян Ю.Б.
  • Сычев В.В.
  • Моисеев В.Г.
RU2169652C1
СОСТАВ ДЛЯ ТЕРМИТНОЙ СВАРКИ 2007
  • Цыпин Андрей Владимирович
RU2357846C2
Состав для термитной сварки меди 1986
  • Дуденко Павел Евгеньевич
  • Головина Надежда Михайловна
  • Григорьев Юрий Максимович
  • Ушаков Михаил Владимирович
  • Бердников Вадим Сергеевич
  • Андреев Вольт Викторович
SU1362594A1
СПОСОБ ПАЙКИ РЕЛЬСОВЫХ СОЕДИНИТЕЛЕЙ К РЕЛЬСУ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Аркатов Виктор Степанович
  • Васин Валерий Викторович
  • Емельянов Евгений Николаевич
  • Конаков Александр Викторович
  • Фадеев Валерий Сергеевич
  • Чигрин Юрий Леонидович
  • Штанов Олег Викторович
  • Паладин Николай Михайлович
  • Щитов Виктор Николаевич
RU2390597C1
СОСТАВ ДЛЯ ТЕРМИТНОЙ СВАРКИ 2008
  • Смыгин Дмитрий Сергеевич
  • Жолобов Юрий Степанович
  • Исаев Валерий Фазиевич
  • Москвин Леонид Константинович
  • Смирнов Юрий Михайлович
RU2371289C1
Состав термитной смеси для сварки 1983
  • Ушаков Михаил Владимирович
  • Дуденко Павел Евгеньевич
  • Григорьев Юрий Максимович
  • Ватагин Владимир Викторович
  • Бердников Вадим Сергеевич
SU1130445A1
ТЕРМИТНАЯ РЕАКЦИОННАЯ СМЕСЬ ДЛЯ СВАРКИ ЖЕЛЕЗНОДОРОЖНЫХ РЕЛЬСОВ 2022
  • Козырев Николай Анатольевич
  • Юрьев Алексей Борисович
  • Михно Алексей Романович
  • Шевченко Роман Алексеевич
  • Усольцев Александр Александрович
  • Бендре Юлия Владимировна
  • Горюшкин Владимир Фёдорович
  • Ознобихина Наталья Валерьевна
  • Соколов Борис Михайлович
RU2783435C1

Иллюстрации к изобретению RU 2 135 340 C1

Реферат патента 1999 года ТЕРМИТНЫЙ СТЕРЖЕНЬ И СОСТАВ ТЕРМИТНОЙ СМЕСИ

Термитный стержень для сварки-пайки, резки и наплавки металлических конструкций выполнен в виде сформированной в цилиндр термитной смеси с оболочкой, сгорающей одновременно с составом термитной смеси. Состав термитной смеси содержит, мас.%: восстановитель (бор, или металл из группы алюминия, титана, кремния или сплавы кремния с железом, кремния с марганцем, кремния с кальцием, кремния с алюминием, или их смеси между собой и с бором) 6-30; газогенерирующую добавку в виде нитратов щелочных металлов, или аммония, или их смеси 10-40; оксид меди - остальное. В газогенерирующую добавку можно дополнительно ввести органические соединения, в качестве которых используют крахмал, сахар, мочевину, дициандиамид или их смесь. Состав может дополнительно содержать 0,1-30 мас.% оксидов никеля или олова или марганца или хрома или железа или их смеси. Кроме того, состав может содержать 0,1-10 мас.% никеля, или олова, или марганца, или их смеси, а также 0,1-10 мас.% флюса. Техническим результатом от использования изобретения является обеспечение более широких технологических возможностей в части получения горизонтальных, наклонных, вертикальных и потолочных швов, а также безопасности при использовании. 2 с. и 5 з. п.ф-лы, 2 табл., 1 ил.

Формула изобретения RU 2 135 340 C1

1. Термитный стержень, выполненный в виде сформированной в цилиндр термитной смеси с оболочкой, отличающийся тем, что оболочка выполнена из материала, сгорающего одновременно с составом термитной смеси. 2. Состав термитной смеси, содержащий оксид меди и восстановитель, отличающийся тем, что он дополнительно содержит газогенерирующую добавку в виде нитратов щелочных металлов или аммония или их смеси, а в качестве восстановителя содержит бор, или металл из группы алюминия, титана, кремния, или сплавы кремния с железом, кремния с марганцем, кремния с кальцием, кремния с алюминием или их смеси между собой и с бором при следующем соотношении компонентов, мас.%:
Восстановитель - 6-30
Газогенерирующая добавка - 10-40
Оксид меди - Остальное
3. Состав по п.2, отличающийся тем, что газогенерирующая добавка дополнительно содержит органические соединения в количестве 1-7 мас.%.
4. Состав по п.3, отличающийся тем, что в качестве органических соединений газогенерирующая добавка содержит крахмал, сахар, мочевину, дициандиамид или их смесь. 5. Состав по любому из пп.2-4, отличающийся тем, что он дополнительно содержит 0,1-30 мас. % оксидов никеля, или олова, или марганца, или хрома, или железа, или их смеси. 6. Состав по любому из пп.2-4, отличающийся тем, что он дополнительно содержит 0,1-10 мас.% никеля, или олова, или марганца, или их смеси. 7. Состав по любому из пп.2-4, отличающийся тем, что он дополнительно содержит 0,1-10 мас.% флюса.

Документы, цитированные в отчете о поиске Патент 1999 года RU2135340C1

RU 1833272 A1, 07.08.93
Состав для термитной сварки меди 1986
  • Дуденко Павел Евгеньевич
  • Головина Надежда Михайловна
  • Григорьев Юрий Максимович
  • Ушаков Михаил Владимирович
  • Бердников Вадим Сергеевич
  • Андреев Вольт Викторович
SU1362594A1
Термитная смесь 1947
  • Кукин А.Н.
  • Талыков А.А.
SU77895A1
Термитная смесь 1950
  • Кукин А.Н.
  • Талыков А.А.
SU92367A2
Способ дискретного управления предохранительным торможением 1976
  • Новиков Анатолий Флиппович
  • Константинов Михаил Юрьевич
  • Растарасов Николай Иванович
SU659517A2
EP 0230650 A1, 05.08.87
База данных WPIL on QESTEL, Лондон: Дервент пабликейшн ЛТД, 1984, неделя 11, AN 84-065774, J 59021488.

RU 2 135 340 C1

Авторы

Румянцев В.Н.(Ru)

Карташов Ю.И.(Ru)

Лебедев Владимир Георгиевич

Бурова Л.Г.(Ru)

Фокин Ю.М.(Ru)

Шкода А.К.(Ru)

Фоменко В.В.(Ru)

Осипенко П.Д.(Ru)

Даты

1999-08-27Публикация

1998-04-15Подача