Изобретение относится к металлургии, а именно к технологии изготовления проволоки из чугуна с шаровидным графитом (ЧШГ), сочетающей высокие механические свойства со стойкостью против коррозии.
Известен способ производства проволоки волочением прутков [1].
Недостаток известного способа состоит в низких прочности, пластичности и коррозионной стойкости проволоки.
Техническая задача, решаемая изобретением, состоит в повышении прочности, пластичности и коррозионной стойкости проволоки.
Указанная техническая задача решается тем, что проволоку производят из чугуна с шаровидным графитом, при этом прутки нагревают до температуры 800-900oC, осуществляют многопроходную ротационную ковку с вытяжкой за проход 1,10-1,52, многопроходное волочение с вытяжкой за проход 1,08-1,45 при температуре 500-700oC и отжиг.
Возможен вариант выполнения способа, согласно которому отжиг проводят путем нагрева проволоки из ЧШГ до температуры 800-1000oC, при которой выдерживают в течение 0,5-36 ч.
Сущность предлагаемого изобретения заключается в следующем. В процессе ротационной ковки прутков из ЧШГ при температуре 800-900oC в каждом из проходов происходит многоцикловое деформирование металлической матрицы в аустенитном состоянии и графитовых глобулей с одновременной рекристаллизацией измельченных зерен аустенита. При вытяжке за проход λк= 1,10-1,52 возникающие в ЧШГ зародышевые трещины не достигают необратимого развития и в течение междеформационной паузы полностью исчезают. Вследствие измельчения зерен микроструктуры и рекристаллизации наклепанного аустенита пруток из ЧШГ приобретает более высокие механические свойства и технологическую пластичность, что делает его пригодным к дальнейшему теплому волочению.
В процессе теплого волочения при температуре 500-700oC и вытяжке за проход 1,08-1,45 глобулярные частицы графитовых включений вначале приобретают удлиненную форму, вытягиваясь по направлению волочения, а затем разрываются на отдельные части, также близкие по форме к глобулям, но с меньшим диаметром. То есть после каждого прохода теплого волочения с вытяжкой λв= 1,08-1,45 при температуре 500-700oC чугун сохраняет шаровидную форму графитовых включений и высокую технологическую пластичность. Металлическая матрица при этих температурах разупрочняется лишь частично, поэтому постепенно микроструктура проволоки приобретает волокнистый характер и анизотропию механических свойств.
Отжиг полученной проволоки из ЧШГ при 800-1000oC в течение 0,5- 36 ч приводит к рекристаллизации и стабилизации микроструктуры, глобулизации графитовых включений, повышению прочности, пластичности, коррозионной стойкости и равномерности свойств.
Экспериментально установлено, что если температура нагрева под ротационную ковку ниже 800oC или вытяжка за проход λк превысит 1,52, то в кованом прутке будут сохраняться и накапливаться микротрещины, которые резко снижают его механические и антикоррозионные свойства, делают невозможным дальнейшее волочение прутка. Увеличение температуры нагрева под ротационную ковку более 900oC приводит к росту зерен микроструктуры, ухудшению механических свойств, а уменьшение вытяжки за проход менее 1,10 ухудшает проработку микроструктуры ЧШГ и требует увеличения необходимого числа проходов, что нецелесообразно.
При температуре волочения ниже 500oC или вытяжке за проход λв более 1,45 деформированная структура проволоки из ЧШГ неравномерна, поражена дефектами, и после отжига имеет низкие механические свойства и стойкость против коррозии. Увеличение температуры волочения более 700oC приводит к ослаблению границ зерен и разрывам проволоки в процессе волочения, а также к формированию неоднородной микроструктуры, что снижает механические и антикоррозионные свойства проволоки. Уменьшение вытяжки за проход λв менее 1,08 не улучшает свойств готовой проволоки из ЧШГ, а лишь увеличивает требуемое число проходов и удлиняет производственный цикл.
При температуре отжига менее 800oC или времени отжига менее 0,5 ч рекристаллизация и графитизация ЧШГ протекает неполностью. В результате не достигается наилучший комплекс механических свойств и максимальная коррозионная стойкость проволоки из нее. Увеличение температуры отжига более 1000oC или времени выдержки более 36 ч приводит к росту зерен микроструктуры, потере прочности и пластичности проволоки из ЧШГ.
Примеры реализации способа.
Пруток круглого сечения диаметром 10,69 мм из ЧШГ, содержащий по массе 3,0% углерода, 1,6% кремния, 0,5% никеля, модифицированного церием и кальцием, нагревают до температуры ковки Tк=850oC и задают на ковку в ротационно-ковочную машину В-202, где осуществляют ковку за 5 проходов с вытяжкой λк= 1,31 в каждом проходе по следующему маршруту: Кованый пруток диаметром 5,44 мм острят и задают заостренным концом в цепной волочильный стан, на котором перед волокой установлена проходная трубчатая печь. В трубчатой печи пруток нагревают до температуры теплого волочения Tв=600oC и подвергают волочению с технологической смазкой за 5 проходов с вытяжкой в каждом проходе λв= 1,27 по маршруту:
После волочения проволоку из ЧШГ диаметром 3,00 мм подвергают высокотемпературному отжигу по режиму: нагрев до температуры отжига Tо=900oC, выдержка при температуре отжига τ = 18 ч, охлаждение до комнатной температуры.
Готовая проволока из ЧШГ обладает высокой прочностью, пластичностью и коррозионной стойкостью.
В табл. 1 приведены варианты реализации предложенного способа, а в табл. 2 - показатели их эффективности.
Как следует из табл. 1 и 2, в случае реализации предложенного способа (варианты 2-4) достигается повышение прочности, пластичности и коррозионной стойкости проволоки из ЧШГ. В случаях запредельных значений заявленных параметров (варианты 1 и 5) комплекс механических свойств и коррозионная стойкость чугунной проволоки ухудшаются.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ ЧУГУННЫХ ТРУБ | 1998 |
|
RU2137564C1 |
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВОГО ПРОКАТА ИЗ ЧУГУНА | 1998 |
|
RU2137560C1 |
Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы | 2017 |
|
RU2656626C1 |
Способ получения тонкой проволоки из сплава TiNiTa | 2020 |
|
RU2759624C1 |
Способ получения наноструктурной проволоки из сплава титан-никель-тантал с эффектом памяти формы | 2016 |
|
RU2621535C1 |
Способ изготовления тонкой проволоки из биосовместимого сплава TiNbTaZr | 2018 |
|
RU2694099C1 |
Способ получения проволоки из сплава титан-ниобий-тантал для применения в производстве сферического порошка | 2020 |
|
RU2751065C1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЦЕНТРОБЕЖНО-ЛИТОЙ ТРУБЫ ИЗ ВЫСОКОПРОЧНОГО ЧУГУНА С ШАРОВИДНЫМ ГРАФИТОМ | 2000 |
|
RU2175986C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ МИКРОПРОВОЛОКИ ИЗ ТРУДНОДЕФОРМИРУЕМЫХ МАТЕРИАЛОВ | 1997 |
|
RU2146975C1 |
Сварочная проволока с высоким содержанием азота | 2021 |
|
RU2768949C1 |
Изобретение относится к металлургии, а именно к технологии изготовления проволоки из чугуна с шаровидным графитом, сочетающей высокие прочностные и пластические свойства со стойкостью против коррозии. Способ включает нагрев прутков из чугуна с шаровидным графитом, их многопроходную ротационную ковку, последующее многопроходное волочение и отжиг. Прутки нагревают до температуры 800-900oС. Осуществляют их многопроходную ротационную ковку с вытяжкой за проход 1,10-1,52, многопроходное волочение с вытяжкой за проход 1,08-1,45 при температуре 500-700oС и отжиг. Отжиг проволоки проводят при температуре 800-1000oС и времени выдержки 0,5-36 ч. Изобретение позволяет повысить прочность, пластичность и коррозионную стойкость проволоки. 1 з.п. ф-лы, 2 табл.
Коликов А.П | |||
и др | |||
Новые процессы деформации металлов и сплавов | |||
-М.: Высшая школа, 1986, с | |||
Дровопильное устройство | 1921 |
|
SU302A1 |
US 3763680 А, 09.10.73 | |||
СПОСОБ ЗАЩИТЫ ОТ СТАТИЧЕСКОЙ ЭЛЕКТРИЗАЦИИ ЖИДКИХ ДИЭЛЕКТРИКОВ | 1990 |
|
RU2028736C1 |
УСТАНОВКА ГИДРОПЕРЕРАБОТКИ НЕФТЯНЫХ ОСТАТКОВ | 2018 |
|
RU2758360C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ДРЕВЕСНОСТРУЖЕЧНЫХПЛИТ | 0 |
|
SU314667A1 |
Авторы
Даты
1999-09-20—Публикация
1998-06-16—Подача