СПОСОБ ОЧИСТКИ ФОСФОРНОЙ КИСЛОТЫ Российский патент 1999 года по МПК C01B25/234 

Описание патента на изобретение RU2139240C1

Настоящее изобретение относится к способу удаления примесей из фосфорной кислоты, полученной мокрым способом.

Фосфорная кислота может быть получена мокрым способом путем взаимодействия минеральной кислоты, обычно серной кислоты, с обогащенным фосфатом кальция, в результате чего образуется разбавленная фосфорная кислота, содержащая приблизительно 30% P2O5, и осадок сульфата кальция. После фильтрования кислота содержит много различных анионных примесей, таких как сульфаты и соединения фтора, и катионных примесей, наиболее важные из которых железо, алюминий, магний и кальций, и органических примесей. Количество и вид примесей-загрязнителей зависит прежде всего от исходного фосфата, используемого в качестве сырья.

Разбавленная кислота концентрируется (сгущается) выпариванием до концентрации 50-70% по P2O5, при этом летучие примеси, такие как соединения фтора, большей частью удаляются вместе с парами воды, но концентрация других примесей увеличивается.

Разработано много способов очистки фосфорной кислоты, полученной мокрым способом, для снижения концентрации примесей до такого уровня, чтобы кислота могла быть использована для других целей, кроме производства удобрений. Известные способы очистки включают методы экстракции растворителем, осаждение растворителем, непрямое осаждение и ионный обмен. Эти известные способы имеют недостаток, заключающийся в их дороговизне.

Магний, присутствующий в виде примеси, осаждается, по известному способу, с помощью фтористоводородной или кремнефтористоводородной кислот. В патенте США N 4248843 описан способ очистки фосфорной кислоты, в котором ионы магния, присутствующие как примесь, осаждаются в виде пирофосфатов. Недостатком этого способа является высокая вязкость при больших концентрациях, что затрудняет кристаллизацию пирофосфата и отделение кристаллов.

Кристаллизующийся пирофосфат магния биологически не активен, поэтому как таковой он не находит применения: для того, чтобы он мог быть использован как удобрение, или в кормах для животных, это соединение необходимо подвергнуть гидролизу.

Задачей настоящего изобретения было получение очень чистой фосфорной кислоты с невысокой стоимостью. Другой задачей изобретения было осаждение ионов металлов, присутствующих как примеси, в виде соединений, которые можно использовать в промышленности.

При создании изобретения было установлено, что присутствующие в фосфорной кислоте примеси могут быть осаждены как соединения, которые кристаллизуются при меньших концентрациях фосфорной кислоты, чем в современном процессе. Было дополнительно установлено, что, если исходная кислота, используемая в процессе, не содержит случайных примесей, таких как кадмий, то процесс имеет дополнительное преимущество: отходы, включающие примеси, могут быть использованы в качестве полезного сырья в производстве. Таким образом, примеси, удаленные в данном процессе, не будут представлять опасности для окружающей среды.

Основные признаки способа изобретения даны в пунктах формулы изобретения.

Согласно изобретению, сначала удаляются двухвалентные ионы металлов примесей из фосфорной кислоты, полученной мокрым способом. В этом процессе фосфорная кислота квалификации "удобрение" или "фильтрованная кислота" сгущается (концентрируется) нагреванием до концентрации (по P2O5) 58-68%. При охлаждении кислотной смеси двухвалентные металлические ионы примесей кристаллизуются в соединение M2+ (H2PO4)2 •n•H3PO4, в котором M2+ обозначает ион металла, а число n ассоциированных молекул фосфорной кислоты составляет 2 - 5.

Исходная фосфорная кислота может быть фосфорной кислотой, полученной по мокрому способу, с содержанием P2O5 приблизительно 20-60%, типично 30% P2O5 или 50% P2O5. Содержание сульфатов в такой фосфорной кислоте типично варьирует в пределах 2 - 4% SO4.

Фосфорная кислота, полученная по мокрому способу, содержит различные анионные, катионные и органические примеси, концентрация которых варьирует в зависимости от происхождения фосфатного концентрата, из которого получена кислота.

Фосфорная кислота (концентрации по P2O5 52%), полученная мокрым способом из фосфатного концентрата из Siilinjarvi, типично содержит в качестве катионных металлических примесей приблизительно 0,1% Al; 1,0% Mg и 0,5% Fe, в то время как фосфорная кислота (55% по P2O5), полученная из концентрата из Морокко, типично содержит приблизительно 0,8% Al; 0,6% Mg и 0,8% Fe.

По способу изобретения можно также очищать фосфорную кислоту, которая использовалась для поверхностной обработки металлов, так как такая фосфорная кислота содержит в качестве загрязнителей, например, ионы двухвалентных металлов.

По способу изобретения возможно почти полное удаление катионов металлов из фосфорной кислоты или по меньшей мере снижение их концентрации до приемлемого уровня. При этом способе снижается концентрация, например, следующих ионов металлов: Mg, Fe, Ca, Mn, Zn, Cd, Co, Cu, Pb и Ni.

Согласно спектрам дифракции рентгеновских лучей образовавшееся кристаллическое соединение не является ни пирофосфатом магния, ни безводным двухзамещенным фосфатом магния. После промывки кристаллов этанолом некоторое количество фосфорной кислоты растворяется и по спектрам дифракции рентгеновских лучей идентифицируются Mg(H2PO4)2 и Fe(H2PO4)2•2H2O. Анализ показывает, что кристаллический ортофосфат M2+ (H2PO4)2•n•H3PO4 содержит, главным образом, двухвалентные катионы и с ним ассоциированы молекулы фосфорной кислоты (n = 2 -5).

Образовавшиеся кристаллы соединений металлов могут быть отделены от фосфорной кислоты известными методами, такими как центрифугирование, фильтрация под давлением, вакуумная фильтрация или седиментация.

Согласно настоящему изобретению полезно удалить сульфат из кислоты до ее сгущения. Однако удаление сульфата не является обязательным. Сульфат может быть удален, например, непосредственно из фосфорной кислоты путем осаждения в виде гипса с помощью соли кальция. Было тем не менее замечено, что понижение содержания сульфата дает возможность использовать на стадии сгущения кислоты более низкую температуру, чем без уменьшения содержания сульфата.

Способ позволяет также использовать выкристаллизовавшееся из фосфорной кислоты соединение в качестве сырья в промышленности. Фосфат магния, выкристаллизовавшийся из фосфорной кислоты, полученной из сырого (неочищенного) фосфата, содержащего мало тяжелых металлов, может быть использован, например, в кормах животным и как сырье в производстве удобрений. При использовании в кормах для животных предпочтительно, чтобы содержание вредных ионов (F, As, Al и Cr) в кристаллах было уменьшено, а содержание полезных микроэлементов (Fe, Mn, Zn и Cu) увеличено соответственно концентрации сгущенной кислоты.

Было также отмечено, что если очищенная кислота стабилизируется, например, выдерживанием ее в течение нескольких суток, или с помощью разбавления, то последующая кристаллизация может быть предотвращена.

Ниже изобретение описывается более подробно с помощью конкретных примеров. Однако очевидно, что разнообразие использования изобретения не ограничивается приведенными ниже примерами.

Пример 1
Фосфорная кислота квалификации "удобрение" (Siilinjarvi) была сгущена (150oC, 65 мм рт.ст.) до 67,5% по P2O5. Концентрированная (сгущенная) кислота содержала 2,76% SO4. При 53oC была добавлена затравка для кристаллизации в количестве 2% от массы сгущенной кислоты. Через сутки, когда суспензия охладилась до 22oC, кристаллы были отделены в центрифуге, и соединение было идентифицировано по спектру дифракции рентгеновских лучей. Качество концентрированной кислоты и кислоты-продукта представлено в табл. 1 (см. в конце описания).

Пример 2
Была приготовлена смесь из фильтрованной кислоты из Siilinjarvi (25,6% по P2O5) и кислоты для удобрения (51,3% по P2O5), содержание сульфата в которой было уменьшено с помощью добавления кальция. Эта фосфорная кислота квалификации "удобрение" с пониженным содержанием сульфата (0,2% SO4) была сгущена до 64% по P2O5. Затравка была введена при 90oC, после охлаждения суспензии до 25oC через сутки кристаллы были отделены. Результаты анализа концентрированной (сгущенной) кислоты и кислоты-продукта и анализ кристаллов приведены в табл. 2 (см. в конце описания).

Пример 3
Фосфорная кислота квалификации "удобрение" (40% P2O5, Siilinjarvi), содержание в которой сульфата было снижено (0,66% SO4) и 95% присутствующего железа в которой восстановлено до двухвалентного железа, была сгущена до 57,9% P2O5. При этой концентрации кислота содержала 1,2% Mg и 0,53% Fe. После дополнительного сгущения приблизительно 80% железа оставалось в восстановленной форме. Кристаллы были отделены, образовавшийся продукт (кислота) анализировался через сутки и через неделю. Результаты анализов приведены в табл. 3 (см. в конце описания).

Пример 4
Фосфорная кислота (Морокко) квалификации "удобрение", в которой содержание сульфата было снижено (1,3% SO4), была сгущена до 64% по P2O5. Затравка (1%) была введена при 5oC, кристаллы были отделены через сутки, соединение идентифицировалось по спектру дифракции рентгеновских лучей. Результаты анализов продукта (кислоты) и кристаллов показаны в табл. 4 (см. в конце описания).

Пример 5
Фосфорная кислота квалификации "удобрение" (Siilinjarvi), в которой содержание сульфата было снижено (0,8% SO4), была сгущена до 64,2% по P2O5. Затравка (1%) была введена при 95oC, кислота охлаждалась в течение 5 часов до 50oC. Концентрированная кислота содержала 1,5% Mg, кислота-продукт содержала 0,6% Mg.

Похожие патенты RU2139240C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ФОСФОРНОЙ КИСЛОТЫ ПУТЕМ КРИСТАЛЛИЗАЦИИ ПОЛУГИДРАТА ФОСФОРНОЙ КИСЛОТЫ 2000
  • Аалтонен Ярмо
  • Риихимяки Сакари
  • Илинен Паула
  • Векман Андерс
RU2226499C2
СПОСОБ УДАЛЕНИЯ ЖЕЛЕЗА ИЗ ФОСФОРНОЙ КИСЛОТЫ, ПОЛУЧЕННОЙ МОКРЫМ СПОСОБОМ 1993
  • Тимо Карьялайнен[Fi]
  • Эско Кари[Fi]
RU2102313C1
СПОСОБ ПРИГОТОВЛЕНИЯ СЕРНОКИСЛОГО ЖЕЛЕЗА (3) 1995
  • Харри Маттила
  • Тимо Кенаккала
  • Олли Констари
RU2133707C1
СПОСОБ ОЧИСТКИ ЭКСТРАКЦИОННОЙ ФОСФОРНОЙ КИСЛОТЫ 2009
  • Шарипов Тагир Вильданович
  • Мустафин Ахат Газизьянович
  • Усманов Рафкат Талгатович
RU2406692C1
СПОСОБ ОЧИСТКИ ЭКСТРАКЦИОННОЙ ФОСФОРНОЙ КИСЛОТЫ 2009
  • Ракчеева Лилиана Владимировна
  • Кладос Дмитрий Константинович
  • Кочеткова Вера Валентиновна
  • Кузьмичева Татьяна Николаевна
  • Злобина Евгения Петровна
  • Богач Евгений Владимирович
  • Классен Петр Владимирович
RU2408530C1
СПОСОБ ПРИГОТОВЛЕНИЯ СЛОЖНЫХ УДОБРЕНИЙ 1999
  • Йуутинен Осмо
RU2196758C2
СПОСОБ ОЧИСТКИ ЭКСТРАКЦИОННОЙ ФОСФОРНОЙ КИСЛОТЫ 2011
  • Ковалев Михаил Иванович
  • Идрисова Светлана Фанисовна
  • Муллаходжаев Тимур Исмайлходжаевич
  • Олифсон Аркадий Львович
RU2452685C1
ПОЛУЧЕНИЕ ДВУХ СОЛЕЙ ЩЕЛОЧНЫХ МЕТАЛЛОВ ПОСРЕДСТВОМ КОМБИНИРОВАННОГО СПОСОБА ИОННОГО ОБМЕНА И КРИСТАЛЛИЗАЦИИ 2000
  • Матиессен Флемминг
RU2238906C2
СПОСОБ ПОЛУЧЕНИЯ ФОСФАТА ЖЕЛЕЗА ИЗ ЖЕЛЕЗОСОДЕРЖАЩИХ ОТХОДОВ 2022
  • Ли, Цзинь
  • Ван, Цзяцай
  • У, Шэнпин
  • Ли, Маоган
  • Ли, Шуньфан
  • Цзянь, Лумин
  • Хоу, Цзюнь
RU2801188C1
СПОСОБ ПОЛУЧЕНИЯ ОЧИЩЕННОЙ ФОСФОРНОЙ КИСЛОТЫ 2006
  • Муллаходжаев Тимур Исмайлходжаевич
  • Олифсон Аркадий Львович
  • Сырченков Александр Яковлевич
  • Федулов Юрий Николаевич
RU2315709C1

Иллюстрации к изобретению RU 2 139 240 C1

Реферат патента 1999 года СПОСОБ ОЧИСТКИ ФОСФОРНОЙ КИСЛОТЫ

Изобретение относится к процессу очистки неочищенной фосфорной кислоты, полученной мокрым способом, и может найти применение в производстве удобрений, в кормах животным. Сущность изобретения заключается в том, что кислота, подлежащая очистке, сгущается путем нагревания до 58-68% по P2O5. Примеси удаляются из кислоты путем кристаллизации в соединение M2+(H2PO4)2•n•H3PO4, где M2+ - двухвалентный ион металла примесей, а n может варьировать в пределах от 2 до 5. Согласно изобретению получают чистую фосфорную кислоту с невысокой стоимостью. Полученные в виде примесей соединения можно использовать в промышленности. 7 з.п. ф-лы, 4 табл.

Формула изобретения RU 2 139 240 C1

1. Способ очистки неочищенной фосфорной кислоты, полученной мокрым способом, отличающийся тем, что фосфорную кислоту подлежащую очистке, сгущают нагреванием до концентрации 58-68% по Р2О5 и примеси удаляют из нее путем кристаллизации в виде соединения
М+22РО4)2•n•Н3РО4,
где М+2 - двухвалентный ион металла примеси;
n = 2-5.
2. Способ по п.1, отличающийся тем, что перед сгущением из кислоты, подлежащей очистке, удаляют сульфатные ионы. 3. Способ по п.1 или 2, отличающийся тем, что сгущение производят при температуре от 90 до 150oC при давлении 65 мм рт.ст. 4. Способ по одному из пп.1-3, отличающийся тем, что сгущенную кислоту вводят затравочные кристаллы. 5. Способ по одному из пп.1-4, отличающийся тем, что из фосфорной кислоты кристаллизацией удаляют двухвалентные ионы металлов, в особенности Mg, Fe, Mn, Zn, Cd и Cu. 6. Способ по одному из пп.1-5, отличающийся тем, что фосфорную кислоту, подлежащую очистке, сгущают по меньшей мере до 61% по Р2О5. 7. Способ по одному из пп.1-6, отличающийся тем, что фосфорную кислоту, подлежащую очистке, сгущают не более чем до 65% Р2О5. 8. Способ по одному из пп.1-7, отличающийся тем, что температура кристаллизации соединений примесей составляет от 0 до 100oC, предпочтительно от 20 до 90oC.

Документы, цитированные в отчете о поиске Патент 1999 года RU2139240C1

US 4248843 A, 03.02.81
Способ очистки фосфорной кислоты 1973
  • Фернандо Оре
SU628809A3
Способ очистки экстракционной фосфорной кислоты 1976
  • Борисов Василий Михайлович
  • Бурова Марианна Сергеевна
  • Кочетков Виктор Николаевич
SU643427A1
Способ концентрирования и очистки фосфорной кислоты 1986
  • Островлянчик Евгения Сергеевна
  • Гриневич Анатолий Владимирович
  • Абрамов Владимир Яковлевич
  • Ворошин Вячеслав Александрович
  • Алексеев Алексей Иванович
  • Бадальянц Харэн Азрапетович
  • Талмуд Марк Моисеевич
  • Бабкин Валерий Вениаминович
  • Успенский Дмитрий Дмитриевич
  • Коряков Владимир Васильевич
  • Соколова Татьяна Александровна
  • Корюкин Владимир Мифодьевич
SU1467034A1
ГОРЕЛКА ДЛЯ ГАЗОПЛАМЕННОЙ ОБРАБОТКИ МЕТАЛЛОВ 1993
  • Авдеев В.П.
  • Воскобойник Г.А.
  • Брусенцов В.Е.
  • Крынев А.Т.
RU2076790C1

RU 2 139 240 C1

Авторы

Векман Андерс

Даты

1999-10-10Публикация

1995-06-19Подача