Настоящее изобретение относится к устройствам контроля состояния трубопроводов, а именно к устройству для измерения и неразрушающего контроля материала трубопровода.
Наиболее эффективно настоящее изобретение может быть использовано для трубопроводов, транспортирующих нефть и нефтепродукты.
Кроме того, изобретение может быть использовано для трубопроводов, транспортирующих любую другую жидкую среду, например воду.
При эксплуатации трубопроводов, во избежание аварий, применяется диагностика целостности и толщины стенки трубопроводов. В настоящее время широкое применение находят "интеллектуальные" внутритрубные инспекционные снаряды. Они, как правило, перемещаются по трубопроводу с транспортируемой средой и осуществляют разного рода измерения. Чаще всего речь идет о том, чтобы провести измерения толщины стенки трубопровода, чтобы установить местную коррозию, потерю металла на стенках в результате механических повреждений, обширной коррозии и т.п. В зависимости от постановки задачи используются датчики различного типа, например: электрооптические, ультразвуковые и т.п.
В процессе проведения диагностики из-за наличия отложений внутри трубопровода и взвеси в транспортируемой среде на датчиках появляется осадок. Это приводит к ухудшению качества измерения вплоть до полной потери результатов на отдельных участках трубопровода, что не позволяет получить достоверную информацию о состоянии трубопровода и может привести к его аварии.
Известно устройство для измерения и неразрушающего контроля материала трубопровода (выложенная заявка ФРГ 3626646 A1), содержащий цилиндрический носитель датчиков, расположенных по его окружной периферии. Носитель выполнен из эластичного материала в виде ряда соединенных между собой подпружиненных в радиальном направлении держателей. Внешний диаметр носителя несколько превышает внутренний диаметр трубопровода. Каждый держатель снабжен продольной выемкой с установленными в ней датчиками, образующей совместно с внутренней стенкой трубопровода при установке в него устройства канал, открытый со стороны хвостовой части носителя. В устройство также входит герметичный корпус с манжетами, шарнирно соединенный с носителем и несущий соединенные с датчиками средства для обработки информации.
Устройство работает следующим образом.
Помещенное в диагностируемый трубопровод устройство перемещается с транспортируемой средой и осуществляет измерения толщины стенки трубопровода. В процессе работы устройства на датчики оседают посторонние частицы, из-за чего достоверность измерений значительно ухудшается, что не позволяет обнаружить большое количество имеющихся на стенке трубопровода дефектов.
Известно другое устройство для измерения и неразрушающего контроля материала трубопровода (Руководство к эксплуатации устройства Pipetronix UltraScan 28''/32'' Version (II) фирмы Pipetronix (ФРГ)), содержащее цилиндрический носитель датчиков, расположенных по его окружной периферии. Носитель выполнен из эластичного материала в виде ряда соединенных между собой подпружиненных в радиальном направлении держателей. Внешний диаметр носителя несколько превышает внутренний диаметр трубопровода. Каждый держатель снабжен продольной выемкой с установленными в ней датчиками, образующей совместно с внутренней стенкой трубопровода при установке в него устройства канал, открытый со стороны хвостовой части носителя. В устройство также входит герметичный корпус с перфорированными манжетами, шарнирно соединенный с носителем и несущий соединенные с датчиками средства для обработки информации. Выемка каждого держателя соединена с соответствующим отверстием в хвостовой манжете корпуса гибким трубопроводом.
Устройство работает следующим образом.
Помещенное в диагностируемый трубопровод устройство перемещается с транспортируемой средой и осуществляет измерения толщины стенки. Поток транспортируемой среды проходит последовательно по каналам носителя, гибким трубопроводам, отверстиям в манжетах в направлении от хвоста носителя к головной части корпуса.
Существенным недостатком устройства является то, что так как скорость потока в каналах носителя довольно низкая, то при входе транспортируемой среды в каждый канал захватывается взвесь, находящаяся вокруг его входа. Известно, что максимальное количество взвеси находится возле стенки трубопровода, поэтому пространство между датчиками и стенкой трубопровода промывается плохо и во время прохождения потока по каналам происходит частичное осаждение на поверхность датчиков осадка, что приводит к снижению достоверности измерений, что не позволяет обнаружить большое количество имеющихся на стенке трубопровода дефектов.
В основу настоящего изобретения положена задача создания такого устройства для измерения и неразрушающего контроля материала трубопровода, в котором конструкция носителя обеспечивала бы формирование потока транспортируемой среды в каждом канале в направлении, противоположном движению устройства.
Поставленная задача достигается тем, что в устройстве для измерения и неразрушающего контроля материала трубопровода, содержащем цилиндрический носитель датчиков, расположенных по его окружной периферии, и представляющий собой ряд соединенных между собой держателей, каждый из которых снабжен продольной выемкой с установленными в ней датчиками, и по меньшей мере один герметичный корпус, шарнирно соединенный с носителем и несущий соединенные с датчиками средства для обработки информации, а также блок питания, согласно изобретению носитель содержит манжету, диаметр которой несколько превышает внутренний диаметр исследуемого трубопровода, при этом манжета расположена в хвостовой части носителя с образованием зазора между ней и держателями и снабжена сквозными отверстиями, каждое из которых соединено трубопроводом с головной частью выемки соответствующего держателя.
Предлагаемая конструкция носителя позволяет направлять поток транспортируемой среды в головную часть канала, образуемого выемкой держателя и стенкой трубопровода. Это, в свою очередь, позволяет направлять поток среды в каждом канале в направлении, противоположном направлению движения устройства, что позволяет повысить достоверность измерений за счет уменьшения количества осадка на датчиках. Зазор между манжетой и держателями позволяет потоку беспрепятственно выходить из каналов и далее перемещаться внутри носителя в направлении, совпадающем с направлением перемещения устройства.
В предпочтительном варианте выполнения центральная часть манжеты выполнена из материала, имеющего большую жесткость, чем жесткость остальной ее части.
Предлагаемый вариант выполнения изобретения создает герметичное уплотнение в зоне контакта манжеты с трубопроводом и позволяет направлять поток транспортируемой среды в устройство через отверстия манжеты. Кроме того, такая конструкция манжеты позволяет ей успешно преодолевать изгибы трубопровода и другие препятствия при движении устройства.
В соответствии с одним из вариантов конструкции изобретения носитель в головной части снабжен перфорированным фланцем, соединенным с держателями и с манжетой.
Наличие перфорированного фланца позволяет транспортируемой среде свободно протекать из выемки держателя через полость носителя в зону полости трубопровода, расположенную перед устройством. Соединение перфорированного фланца и манжеты между собой позволяет надежно фиксировать манжету в положении поперек трубопровода.
В предпочтительном варианте выполнения изобретения сквозные отверстия манжеты выполнены в ее центральной части.
Предлагаемый вариант изобретения позволяет направить в каналы наиболее чистую часть потока среды, что позволяет повысить качество измерений за счет уменьшения количества осадка на датчиках. Кроме того, такой вариант конструкции позволяет в местах отсутствия текучей среды в трубопроводе заполнять средой каналы и избежать потерь от изменения проницаемости среды, так как при использовании ультразвуковых датчиков воздушный пузырь в трубопроводе - полная потеря сигнала.
Другие цели и преимущества настоящего изобретения станут понятны из следующего детального описания примера его выполнения и прилагаемых чертежей, на которых фиг. 1 изображает устройство согласно изобретению, вид сбоку; фиг. 2 - продольный разрез носителя; фиг. 3 - держатель носителя (вид сверху); фиг. 4 - разрез IV-IV на фиг. 3.
Устройство для измерения и неразрушающего контроля материала трубопровода 1 (фиг. 1) содержит корпус 2 и цилиндрический носитель 3. Корпус 2 содержит две секции 4, 5, внутри которых установлены средства (на фиг не показаны) для записи, обработки данных, а также энергоснабжения. На секциях 4, 5 корпуса 2 установлены манжеты 6, 7. Манжеты 6 предназначены для центрирования корпуса 2 в трубопроводе 1, а также для продвижения устройства вместе с транспортируемой средой. Манжеты 7 предназначены для центрирования корпуса 2 в трубопроводе 1, а также служат в качестве дополнительной опоры. В манжетах 6,7 выполнены сквозные отверстия (на фиг. не показаны). В передней части корпуса 2 расположен защитный бампер 8, внутри которого установлена головка маркерного приемопередатчика 9, предназначенного для определения местоположения устройства в трубопроводе 1, а также для записи посылаемых сигналов от маркера, расположенного за пределами трубопровода, что помогает определению точного местоположения устройства. Секции 4, 5 корпуса 2 соединены карданным узлом 10 между собой и с носителем 3. На секции 4 корпуса 2 установлена система 11 измерения пройденного расстояния. Носитель 3 выполнен из эластичного материала, например, резины, имеет внешний диаметр несколько превышающий внутренний диаметр трубопровода 1 и содержит ряд держателей 12 (фиг. 2), которые закреплены на перфорированном фланце 13 через упругие рычаги 14 с шарнирами 15. Рычаги 14 дополнительно подпружинены манжетой 16, на которой установлены прокладки 17, удерживающие держатели 12 равномерно распределенными по периметру трубопровода. За держателями 12 в хвостовой части носителя 3 расположена манжета 18, жестко соединенная с фланцем 13 с помощью штанги 19. Манжета 18 установлена с зазором относительно держателей 12 и ее диаметр несколько превышает внутренний диаметр трубопровода 1. Центральная часть манжеты 18 выполнена из материала, имеющего большую жесткость, чем жесткость остальной части манжеты (18). В центральной части манжеты 18 выполнены сквозные отверстия 20, к которым посредством втулок (на фиг. не обозначены) крепятся концы гибких трубопроводов 21. В держателях 12 по окружной периферии носителя 3 установлены датчики 22, например, ультразвуковые, которые производят измерение толщины стенки трубопровода 1. Каждый датчик 22 соединен со средствами для обработки информации, установленными в секциях 4, 5 корпуса через кабель 23. На секции 4 установлен блок питания устройства автономного типа. Каждый держатель 12 (фиг. 3) выполнен из упругого материала, например резины, и имеет в поперечном сечении форму сектора цилиндра. Это обеспечивает плотное прилегание держателей 12 к внутренней стенке трубопровода 1 и сохранение постоянного расстояния между стенкой трубопровода 1 и датчиками 22, а также постоянного углового положения датчиков 22 относительно стенки трубопровода 1. В каждом держателе 12 имеется продольная выемка 24, которая совместно со стенкой трубопровода 1 образует канал, открытый со стороны хвостовой части держателя 12. В выемках 24 держателей 12 расположены датчики 22. В каждой выемке 24 выполнены отверстия 25 для крепления датчиков 22, а в головной части - отверстия 26 для присоединения соответствующего трубопровода 21 (фиг.4). Отверстия в манжетах 6, 7 выбираются из условий, чтобы скорость потока среды была достаточна для удаления осадка с поверхности датчиков 22, при обеспечении безостановочного перемещения устройства в трубопроводе 1. Устройство работает следующим образом.
Помещенное в диагностируемый трубопровод 1 устройство движется вместе с транспортируемой средой и производит измерения. Поток среды проходит последовательно через отверстия 20 в манжете 18, трубопроводы 21, выемку 24 в держателях 12, перфорированный фланец 13, отверстия в манжетах 6, 7 и движется быстрее, чем устройство. Входящий в отверстия 20 в манжете 18 поток среды является наиболее чистым (с минимально возможным количеством взвешенных частиц) по сечению трубопровода 1, так как отверстия 20 расположены в центральной части трубопровода 1, при этом наиболее тяжелые частицы осаждаются, тогда как легкие всплывают вверх (например: парафин в нефти). Поток среды, проходящий через манжету 18, по трубопроводам 21 попадает в выемки 24 держателей 12. В каналах, образованных выемками 24 и стенкой трубопровода 1, поток среды перемещается в направлении, противоположном движению устройства, что позволяет значительно уменьшить количество посторонних примесей в промежутке между датчиками 22 и стенкой трубопровода 1 и, в конечном итоге, позволяет получить более достоверные результаты измерений.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ И НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ МАТЕРИАЛА ТРУБОПРОВОДА | 1998 |
|
RU2139469C1 |
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ВНУТРЕННЕЙ ПОВЕРХНОСТИ ТРУБОПРОВОДА (ЕГО ВАРИАНТЫ) | 1998 |
|
RU2129924C1 |
СПОСОБ НАСТРОЙКИ МНОГОКАНАЛЬНОЙ СКАНИРУЮЩЕЙ СИСТЕМЫ СБОРА ДАННЫХ ДЕФЕКТОСКОПА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1998 |
|
RU2158922C2 |
Носитель датчиков дефектоскопа внутритрубного ультразвукового | 2018 |
|
RU2692868C1 |
ВНУТРИТРУБНЫЙ ДЕФЕКТОСКОП (ВАРИАНТЫ) | 2003 |
|
RU2240549C1 |
МАГНИТНЫЙ ПРОХОДНОЙ ДЕФЕКТОСКОП | 2000 |
|
RU2176081C1 |
ВНУТРИТРУБНЫЙ ДЕФЕКТОСКОП | 2003 |
|
RU2248498C1 |
Носитель датчиков дефектоскопа внутритрубного ультразвукового | 2018 |
|
RU2692870C1 |
Внутритрубное устройство очистки (варианты) | 2022 |
|
RU2803509C1 |
Носитель датчиков внутритрубного ультразвукового дефектоскопа | 2018 |
|
RU2692869C1 |
Устройство для измерения и неразрушающего контроля материала трубопровода содержит цилиндрический носитель датчиков, расположенных по его окружной периферии, герметичный корпус, шарнирно соединенный с носителем и несущий соединенные с датчиками средства для обработки информации, а также блок питания. Носитель представляет собой ряд соединенных между собой подпружиненных в радиальном направлении держателей, каждый из которых снабжен продольной выемкой с установленными в ней датчиками. Носитель содержит манжету, диаметр которой несколько превышает внутренний диаметр исследуемого трубопровода. Манжета расположена в хвостовой части носителя с образованием зазора между ней и держателями и снабжена сквозными отверстиями, каждое из которых соединено трубопроводом с головной частью выемки соответствующего держателя. Технический результат заключается в повышении достоверности измерений. 3 з. п.ф-лы, 4 ил.
DE 3626646 A1, 18.02.88 | |||
УНИВЕРСАЛЬНЫЙ ДИАГНОСТИЧЕСКИЙ СНАРЯД-ДЕФЕКТОСКОП ДЛЯ КОНТРОЛЯ ЗА СОСТОЯНИЕМ ТРУБОПРОВОДА | 1993 |
|
RU2111453C1 |
Способ получения концентрированных и вязких медно-аммиачных растворов целлюлозы | 1944 |
|
SU65049A1 |
RU 94011991 A1, 20.08.96. |
Авторы
Даты
1999-10-10—Публикация
1998-08-04—Подача