ОГНЕУПОРНАЯ МАССА Российский патент 2000 года по МПК C04B35/66 C04B33/00 

Описание патента на изобретение RU2151129C1

Изобретение относится к составам огнеупорных масс для литейного производства и производства огнеупоров, и может быть использовано в машиностроительной и металлургической отраслях народного хозяйства.

Известен состав [1] огнеупорной массы, содержащий, мас.%: глина огнеупорная 1-11, магний сернокислый 4-10, порошок обожженного магнезита 15-35, шамот - остальное. Данная огнеупорная масса имеет сложный многокомпонентный состав с высокой температурой (согласно [2] - 1575oC) образования жидкой фазы системы MgO-Al2O3-SiO2, что обуславливает высокую стоимость получаемых огнеупорных изделий. Последнее ограничивает диапазон применения огнеупорных изделий из данной массы, например, для футеровки туннельных обжиговых печей.

Разработан состав огнеупорной массы системы каолинит - Al2O3-SiO2-B2O3 [3] , который также содержит дорогостоящие компоненты, в частности обогащенный каолинит. При этом температура обработки изделий из данной огнеупорной массы достаточно высока (1400-1450oC), а физико-механические характеристики низкие.

Наиболее близким по технической сущности и достигаемому результату является огнеупорная масса системы Al2O3-SiO2, содержащая, мас.%: шамот 48, глина огнеупорная 52 [4]. Фракционный состав шамота при пластическом формировании изделий влажности 16-19% составлял: фракции > 3 мм - 0,8%; фракции < 0,54 мм - 49,0%. Минералогический состав отожженных огнеупорных изделий составлял, мас.%: Al2O3 28; SiO2 48,63.

Однако рассматриваемый состав-прототип огнеупорной массы содержит ряд недостатков, препятствующих получению требуемого технического результата. Процесс получения огнеупорных изделий из состава-прототипа энергоемок. Изделия, получаемые из рассматриваемой огнеупорной массы, подвергаются высокотемпературной (1300-1450oC) обработке. Кроме того, получение шамота из огнеупорных глин также приводит к дополнительным затратам. При этом изделия имеют недостаточно высокие физико-механические свойства и химическую стойкость к воздействию шлаков.

Эти и другие недостатки устраняются предлагаемым техническим решением.

Сущность изобретения заключается в том, что предлагается состав огнеупорной массы, состоящий, мас.%: глина Комсомольского района минералогического состава, мас.%: Al2O3 6,2; SiO2 62,62; СаО 0,48; FeO 0,42; Fe2O3 3,83; ППП 8,11, - 75-80; кварц-турмалиновый отход (КТО) Солнечного горно-обогатительного комбината Комсомольского района минералогического состава, мас.%: Al2O3 13,75; SiO2 61,15; Fe2O3 5,00; FeO 8,10; TiO2 0,68; СаО 1,20; MgO 3,30; Na2O 1,25; K2O 1,60; B2O3 1,90; ППП 2,02, - 20-25.

Необходимо отметить, что данные компоненты огнеупорной массы для изготовления огнеупорных изделий ранее не использовались. Фракционный состав КТО при пластическом формировании изделий влажности 16-19% составлял: фракции > 3 мм 0,8%; фракции < 0,54 мм 49,0%. Минералогический состав отожженных огнеупорных изделий составлял, мас. %: Al2O3 15,5875 - 15,71; SiO2 62,2525 - 62,28; СаО 0,624 - 0,66; FeО 1,956 - 2,340; Fe2O3 4,064 - 4,1225; TiO2 0,136 - 0,17; MgO 0,66 - 0,825; Na2O 0,25 - 0,3125; K2O 0,32 - 0,4; B2O3 0,38 - 0,475; ППП 6,5875 - 6,892.

Задача, решаемая предлагаемым составом огнеупорной массы, заключается в повышении физико-механических свойств изготовляемых огнеупорных изделий.

Наличие в КТО легкоплавких окислов способствует образованию жидкой фазы в структуре изделия - сырца при более низких температурах, чем температура обжига, что интенсифицирует процесс спекания изделия. Кроме того, при обжиге огнеупоров системы Al2O3-SiO2 B2O3 играет роль активной минерализирующей добавки, которая активизирует процесс образования муллита [3]. Первые зародыши кристаллов муллита образуются уже при 900oC. При дальнейшем росте температуры процесс муллитообразования лишь интенсифицируется.

Таким образом, реализуется возможность снижения температуры обжига огнеупорных изделий до 900 - 950oC при повышении физико-механических свойств последних (см. таблицу).

Из таблицы видно, что изменение концентрации КТО в огнеупорной массе приводит к снижению физико-механических свойств изделий.

Признаки, характеризующие изобретение:
- ограничительные: огнеупорная масса включает шамот и огнеупорную глину;
- отличительные: огнеупорная масса содержит, мас.%: глина минералогического состава, мас.%: Al2O3 16,2; SiO2 62,62; СаО 0,48; FeO 0,42; Fe2O3 3,83; ППП 8,11, -75 - 80; кварц-турмалиновый отход минералогического состава, мас. %: Al2O3 13,75; SiO2 61,15; Fe2O3 5,00; FeО 8,10; TiO2 0,68; CaO 1,20; MgO 3,30; Na2O 1,25; K2O 1,60; В2O3 1,90; ППП 2,02, - 20 - 25.

Причинно-следственная связь между существенными признаками и достигаемым техническим решением осуществляется посредством способности легкоплавки окислов КТО в процессе обжига огнеупорных изделий образовать жидкую фазу при более низких температурах термообработки, способствуя интенсивному взаимодействию B2O3 и элементов системы Al2O3-SiO2 с образованием муллита 3Al2O3•2SiO2 и более полному спеканию структуры огнеупорного изделия. В совокупности действия полиморфных превращений и физико-химических процессов повышаются физико-механические свойства получаемых огнеупорных изделий.

Промышленная применимость разработанного состава огнеупорной массы обуславливается доступностью, региональной принадлежностью и невысокой стоимостью компонентов огнеупорной массы; снижением энергозатрат за счет упразднения операции обжига шамота и длительности операции обжига огнеупорных изделий за счет снижения температуры процесса до 900-950oC; повышением физико-механических свойств огнеупорных изделий. Кроме перечисленного, была определена повышенная стойкость к действию шлаков при плавке сталей и цветных сплавов.

ЛИТЕРАТУРА
1. Огнеупорная масса. Кабанов B.C., Суворов С.А., Власов В.В., Редько Г. С. ; Ленингр.технол.ин-т. А.С.963975, СССР. 3аявл.07.07.80, N 2954516/29-33, опубл. в Б.И., 1982, N37. МКИ С 04 В 33/22.

2. Стрелов К.К. Теоретические основы технологии огнеупорных. - М.: Металлургия, 1985. С.234.

3. Гончаров Ю. И., Терсенова Л.А., Альеов Ю.Н. Двухслойный теплоизоляционный огнеупор// Огнеупоры, 1993. N6. С.33-34.

4. Мамыкин П.С., Стралов К.К. Технология огнеупоров. - М.: Металлургия, 1988, С.266-275.

5. Долотов Г. П. , Кондаков Е.А. Печи и сушила литейного производства: Учебник для техникумов, 2-е изд. , перераб. и доп. - М.: Машиностроение, 1984. 232с.

Похожие патенты RU2151129C1

название год авторы номер документа
ОГНЕУПОРНАЯ МАССА 1998
  • Сапченко И.Г.
  • Ломов В.А.
RU2151128C1
ОГНЕУПОРНАЯ МАССА 1998
  • Сапченко И.Г.
  • Ломов В.А.
RU2155734C2
ОГНЕУПОРНАЯ МАССА 1998
  • Сапченко И.Г.
  • Ломов В.А.
RU2159751C2
ОГНЕУПОРНАЯ МАССА 1998
  • Сапченко И.Г.
  • Ломов В.А.
RU2151127C1
ОГНЕУПОРНАЯ МАССА 1998
  • Сапченко И.Г.
RU2159750C2
ГЛАЗУРЬ 1996
  • Кособокова П.А.
  • Васильева Н.Я.
  • Щербина Н.Ф.
RU2112757C1
Керамическая масса для получения клинкерного кирпича 2021
  • Макаров Дмитрий Викторович
  • Суворова Ольга Васильевна
  • Маслобоев Владимир Алексеевич
  • Селиванова Екатерина Андреевна
  • Плетнева Вера Евгеньевна
RU2754747C1
ГЛАЗУРЬ 1998
  • Кособокова П.А.
RU2139259C1
ШИХТА И СПОСОБ ПОЛУЧЕНИЯ МУЛЛИТОКРЕМНЕЗЕМИСТЫХ ОГНЕУПОРНЫХ ИЗДЕЛИЙ 2016
  • Можжерин Владимир Анатольевич
  • Новиков Александр Николаевич
  • Сакулин Вячеслав Яковлевич
  • Мигаль Виктор Павлович
  • Салагина Галина Николаевна
RU2638599C2
ГЛАЗУРЬ 1998
  • Кособокова П.А.
  • Васильева Н.Я.
RU2139260C1

Иллюстрации к изобретению RU 2 151 129 C1

Реферат патента 2000 года ОГНЕУПОРНАЯ МАССА

Изобретение может быть использовано в машиностроительной и металлургической отраслях народного хозяйства. Огнеупорная масса состоит, мас.%: глина 75 - 80; кварц-турмалиновый отход 20 - 25. Используют глину состава, мас.%: Al2O3 16,02, SiO2 62,62, CaO 0,48, FeO 0,42, Fe2O3 3,83, ППП 8,11, и кварц-турмалиновый отход состава, мас. %: Аl2О3 13,75, SiO2 61,15, Fe2O3 5,00, FeO 8,10, TiO2 0,68, CaO 1,20, MgO 3,30, Na2O 1,25, K2O 1,60, B2O3 1,90, ППП 2,02. Используемые в огнеупорной массе компоненты - глина и кварц-турмалиновый отход Комсомольского района - ранее для изготовления огнеупорных изделий не использовались. Огнеупорная масса имеет низкую стоимость, обусловленную доступность компонентов, снижает затраты на производство огнеупоров и повышает их эксплуатационные и физико-химические характеристики. 1 табл.

Формула изобретения RU 2 151 129 C1

Огнеупорная масса, включающая огнеупорную глину и кварцсодержащий отход, отличающаяся тем, что содержит огнеупорную глину минералогического состава, мас.%:
Al2O3 - 16,02
SiO2 - 62,62
CaO - 0,48
FeO - 0,42
Fe2O3 - 3,83
ППП - 8,11
и кварц - турмалиновый отход минералогического состава, мас.%:
Al2O3 - 13,75
SiO2 - 61,15
Fe2O3 - 5,00
FeO - 8,10
TiO2 - - 0,68
CaO - 1,20
MgO - 3,30
Na2O - 1,25
K2O - 1,60
B2O3 - 1,90
ППП - 2,02
при следующем соотношении компонентов, мас.%:
Глина огнеупорная - 75 - 80
Указанный кварц-турмалиновый отход - 20 - 25о

Документы, цитированные в отчете о поиске Патент 2000 года RU2151129C1

СТРЕЛОВ К.К
и др
Технология огнеупоров
- М.: Металлургия, 1988, с.266 - 275
Огнеупорная масса 1974
  • Ложечников Филипп Филиппович
  • Ненашев Владимир Сергеевич
  • Отрадных Дмитрий Павлович
  • Чурзин Николай Матвеевич
SU564292A1
Керамическая масса 1980
  • Зощук Николай Игнатьевич
  • Нестерцов Александр Иванович
  • Лесовик Валерий Станиславович
  • Руденко Татьяна Сергеевна
  • Коновалов Николай Андреевич
SU1004309A1
Способ ремонта бетонных изделий 1989
  • Дорошенко Юрий Михайлович
  • Федорченко Евгений Иванович
  • Шанаев Жорж Иванович
SU1655942A1
SU 628789 A, 05.11.1978.

RU 2 151 129 C1

Авторы

Сапченко И.Г.

Даты

2000-06-20Публикация

1998-03-02Подача