ОГНЕУПОРНАЯ МАССА Российский патент 2000 года по МПК C04B33/22 C04B35/66 

Описание патента на изобретение RU2159751C2

Изобретение относится к составам огнеупорных масс для литейного производства и производства огнеупоров и может быть использовано в машиностроительной и металлургической отраслях народного хозяйства.

Известен состав (1) огнеупорной массы, содержащий, вес.%: глина огнеупорная - 1-11, магний сернокислый - 4-10, порошок обожженного магнезита - 15-35, шамот - остальное.

Данная огнеупорная масса имеет сложный многокомпонентный состав с высокой температурой (согласно (2) - 1575oC) образования жидкой фазы системы MgO-Al2O3-SiO2, что обуславливает высокую стоимость получаемых огнеупорных изделий. Последнее ограничивает диапазон применения огнеупорных изделий из данной массы, например, для футеровки туннельных обжиговых печей.

Разработан состав огнеупорной массы системы каолинит - Al2O3 - SiO2 - B2O3 - (3), который также содержит дорогостоящие компоненты, в частности обогащенный каолинит. При этом температура обработки изделий из данной огнеупорной массы достаточно высока (1400 - 1450oC), а физико-механические характеристики - низкие.

Известна огнеупорная масса системы Al2O3 - SiO2, содержащая, вес.%: шамот - 48%, глина огнеупорная - 52% (4). Фракционный состав шамота при пластическом формовании изделий влажности 16-19% составлял: фракции > 3 мм - 0,8%; фракции < 0,54 мм - 49,0%. Минералогический состав отожженных огнеупорных изделий составлял, вес.%: Al2O3 - 28; SiO2 - 48,63.

Наиболее близким аналогом к заявленному изобретению по технической сущности и достигаемому результату является огнеупорная масса (5), содержащая, вес. %: огнеупорную глину - 15-25; графит - 15-20; натриевое жидкое стекло - 15-20; высококремнеземистый заполнитель - 5-15; борсодержащий компонент - 1-5; кремнефтористый натрий - 1-2; шамот - остальное.

Однако, рассматриваемый состав-прототип огнеупорной массы содержит ряд недостатков, препятствующих получению требуемого технического результата.

Состав-прототип огнеупорной массы обладает высокой степенью растрескивания изделия-сырца при высокой скорости сушки, что влияет на продолжительность данной операции, обуславливая постепенное удаление влаги и предотвращая растрескивание последнего. В противном случае в изделии образуются крупные магистральные трещины, приводящие к его разрушению. Изделия, получаемые из рассматриваемой огнеупорной массы, подвергаются высокотемпературной (1200oC) обработке, что повышает энергоемкость процесса. При этом изделия имеют недостаточно высокие физико-механические свойства и химическую стойкость к воздействию агрессивных сред (например, шлаков хромо-кобальтовых сплавов).

Эти и другие недостатки устраняются предлагаемым техническим решением.

Сущность изобретения заключается в том, что предлагается состав огнеупорной массы, состоящий, вес.%: шамот минералогического состава, вес.%: Al2O3 - 25,49; SiO2 - 48,58; CaO - 0,66; FeO - 0,81; Fe2O3 - 3,48; ППП - 2,49 - 60,58; глина минералогического состава, вес.%: Al2O3 - 16,2; SiO2 - 62,62; CaO - 0,48; FeO - 0,42; Fe2O3 - 3,83; ППП - 8,11 - 39,38; борная кислота - 0,04. В качестве связки использовалась глина Комсомольского района, ранее для изготовления огнеупоров не используемая.

Фракционный состав шамота при пластическом формирования изделий влажностью 16-19% составлял: фракции > 3 мм - 0,8%; фракции < 0,54 мм - 49,0%. Минералогический состав отожженных изделий по основным компонентам составлял, вес.%: Al2O3 - 21,82; SiO2 - 54,09; B2O3 - 0,023.

Задача, решаемая заявляемым составом огнеупорной массы, заключается в повышении физико-механических свойств изготавливаемых огнеупорных изделий.

Введение в состав огнеупорной массы минерализующей добавки в заданном количестве H3BO3 позволяет значительно (в 3-5 раз) сократить цикл сушки изделия-сырца. Изготавливаемые из заявляемого состава изделия подвергались сушке размещением последних в разогретом до 350 - 400oC сушиле. При этом растрескивание изделий из заявляемой огнеупорной массы не наблюдалось, в то время как изделия, выполненные из состава-прототипа, растрескиваются.

При обжиге огнеупоров системы Al2O3-SiO2 B2O3 играет роль активной минерализующей добавки, которая активизирует процесс образования муллита (3). Первые зародыши кристаллов муллита образуются уже при 900oC. При дальнейшем росте температуры процесс муллитообразования интенсифицируется. Таким образом, реализуется возможность снижения температуры обжига огнеупорных изделий до 900 - 950oC при повышении физико-механических свойств последних (таблица 1).

Из таблицы 1 видно, что изменение концентрации H3BO3 в огнеупорной массе приводит к снижению физико-механических свойств изделий.

Признаки, характеризующие изобретение:
Ограничительные: огнеупорная масса включает шамот, огнеупорную глину и порошок борной кислоты.

Отличительные: количественное соотношение компонентов, вес.%: глина минералогического состава, вес.%: Al2O3 - 16,2; SiO2 - 62,62; CaO - 0,48; FeO - 0,42; Fe2O3 - 3,83; ППП - 8,11 - 39,38; шамот минералогического состава, вес. %: Al2O3 - 25,49; SiO2 - 48,58; CaO - 0,66; FeO - 0,81; Fe2O3 - 3,48; ППП - 2,49 - 60,58; борная кислота - 0,04.

Причинно-следственная связь между существенными признаками и достигаемым техническим решением осуществляется посредством способности H3BO3 в указанном количестве или образующемся в процессе обжига огнеупорных изделий B2O3 образовывать жидкую фазу при более низких температурах термообработки, способствуя интенсивному взаимодействию элементов системы Al2O3 - SiO2 с образованием муллита 3Al2O3 • 2SiO2 и более полному спеканию структуры огнеупорного изделия. В совокупности действия полиморфных превращений и физико-химических процессов повышаются физико-механические свойства получаемых огнеупорных изделий.

Промышленная применимость разработанного состава огнеупорной массы обуславливается доступностью огнеупорной массы, сокращением длительности операции сушки сырца-огнеупора и брака последнего по трещинам; снижение энергозатрат и длительности операции обжига огнеупорных изделий за счет снижения температуры процесса до 900-950oC; повышение физико-механический свойств огнеупорных изделий и, как следствие, их стойкости, что сокращает количество ремонтов печного оборудования. Кроме перечисленного, была определена повышенная стойкость к действию шлаков при плавке хромо-кобальтовых сплавов предлагаемых составов в 1,5 раза по сравнению с составами-аналогами.

Повышенная термостойкость разработанных огнеупорных масс, их низкая температура обжига реализовала возможность использования последних для изготовления многоразовых литейных форм для заливки сталей и чугунов. Стойкость литейных форм из огнеупорной массы составляет: ~50 заливок расплава сталей; ~70 заливок чугуна; не менее 150 заливок алюминиевых сплавов.

Литература:
1. Огнеупорная масса. Кабанов В.С., Суворов С.А. Власов В.В., Редько Г. С. , Ленингр. технол. ин-т. А.с. 963975, СССР, Заявл. 07.07.80, N 2954516 29-44, опубл. в Б.И., 1982, N 37, МКИ C 04 B 33/22.

2. Стрелов К.К. Теоретические основы технологии огнеупоров. М., Металлургия, 1985, с. 234.

3. Гончаров Ю.И., Терсенова Л.А., Альеов Ю.Н. Двухслойный теплоизоляционный огнеупор // Огнеупоры, 1993, N 6, с. 33-34.

4. Мамыкин П.С., Стрелов К.К., Технология огнеупоров, М., Металлургия, 1970, с. 275-302.

5. Авторское свидетельство СССР N 1090676 А, опубл. 07.05.1984, кл. C 04 B 33/22.

6. Долотов Г. П. , Кондаков Е.А. Печи и сушила литейного производства: Учебник для техникумов, 2-е издание, перераб. и доп., М., Машиностроение, 1984, с. 232.

Похожие патенты RU2159751C2

название год авторы номер документа
ОГНЕУПОРНАЯ МАССА 1998
  • Сапченко И.Г.
  • Ломов В.А.
RU2155734C2
ОГНЕУПОРНАЯ МАССА 1998
  • Сапченко И.Г.
RU2151129C1
ОГНЕУПОРНАЯ МАССА 1998
  • Сапченко И.Г.
  • Ломов В.А.
RU2151128C1
ОГНЕУПОРНАЯ МАССА 1998
  • Сапченко И.Г.
  • Ломов В.А.
RU2151127C1
ОГНЕУПОРНАЯ МАССА 1998
  • Сапченко И.Г.
RU2159750C2
ГЛАЗУРЬ 1996
  • Кособокова П.А.
  • Васильева Н.Я.
  • Щербина Н.Ф.
RU2112757C1
СОСТАВ ДЛЯ АЛЮМОЦИРКОНОСИЛИЦИРОВАНИЯ СТАЛИ И СПЛАВОВ 1992
  • Паладин Н.М.
  • Белов Е.И.
  • Русин Е.Н.
  • Гузанов Д.С.
RU2048604C1
ГЛАЗУРЬ 1998
  • Кособокова П.А.
RU2139259C1
КЕРАМИЧЕСКАЯ МАССА 1995
  • Герасимов В.В.
  • Хисамеев Г.Г.
RU2099306C1
ПЕРИКЛАЗОШПИНЕЛИДНЫЙ ОГНЕУПОР 1999
  • Савченко Ю.И.
  • Шубин В.И.
RU2142926C1

Иллюстрации к изобретению RU 2 159 751 C2

Реферат патента 2000 года ОГНЕУПОРНАЯ МАССА

Огнеупорная масса для литейного производства и изготовления огнеупоров может быть использована в машиностроительной и металлургической отраслях народного хозяйства. Огнеупорная масса состоит, вес.%: шамот - 60,58; глина Комсомольского района - 39,38; борная кислота - 0,04. Предлагаемая масса имеет низкую стоимость, обусловленную доступностью компонентов, снижает затраты на производство огнеупоров и повышает эксплуатационные характеристики последних. 1 табл.

Формула изобретения RU 2 159 751 C2

Огнеупорная масса, включающая шамот, огнеупорную глину и порошок борной кислоты, отличающаяся тем, что она содержит указанные компоненты в следующем соотношении, вес. %: глина минералогического состава, вес.%: Al2O3 - 16,2; SiO2 - 62,62; CaO - 0,48; FeO - 0,42; Fe2O3 - 3,83; ППП - 8,11 - 39,38; шамот минералогического состава, вес. %: Al2O3 - 25,49; SiO2 - 48,58; CaO - 0,66; FeO - 0,81; Fe2O3 - 3,48; ППП - 2,49 - 60,58; борная кислота - 0,04.

Документы, цитированные в отчете о поиске Патент 2000 года RU2159751C2

Огнеупорная масса 1982
  • Тонков Владимир Николаевич
  • Карасюк Игорь Александрович
  • Сергеев Борис Дмитриевич
  • Шабанов Иван Никитич
  • Быков Александр Мартынович
SU1090676A1
Состав для получения огнеупорного покрытия 1983
  • Тонков Владимир Николаевич
  • Карасюк Игорь Александрович
  • Елисеева Раиса Григорьевна
  • Сергеев Борис Дмитриевич
  • Шабанов Иван Никитич
  • Ус Владимир Сергеевич
SU1105486A1
Огнеупорная масса 1989
  • Маленьких Анатолий Николаевич
  • Митин Владимир Васильевич
  • Косов Игорь Владимирович
SU1604795A1
Устройство для дозирования вязких материалов 1988
  • Коган Ефим Иосифович
  • Малышев Михаил Федорович
  • Перцовский Борис Ефимович
SU1571356A1
US 4522926 A, 11.01.1985
Барабан для резки викеля 1972
  • Рабкин Владимир Моисеевич
  • Левин Файва Давидович
SU466121A2
МАМЫКИН П.С
и др
Технология огнеупоров
- М.: Металлургия, 1970, с.275 - 302.

RU 2 159 751 C2

Авторы

Сапченко И.Г.

Ломов В.А.

Даты

2000-11-27Публикация

1998-11-18Подача