СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ВОЛЬТАМПЕРОМЕТРИИ Российский патент 2000 года по МПК G01N27/48 

Описание патента на изобретение RU2155955C1

Изобретение относится к вольтамперометрии и полярографии и может быть применено в приборах, предназначенных для многоэлементного переменно-токового вольтамперометрического анализа и в переменно-токовых полярографах.

Известен способ вольтамперометрии (а. с. СССР N1518767, М. кл. (4) G 01 N 27/48), заключающийся в том, что на индикаторный электрод подают постоянное, линейно меняющееся напряжение и модулирующее напряжение в виде периодической последовательности двуполярных импульсов, имеющих заданную длительность, следующих с определенным периодом и временем между импульсами, и измеряют разность токов ячейки через определенное время при наличии положительной и отрицательной части импульса либо разность токов через определенное время от начала импульса при наличии положительной части импульса и через то же время после окончания двуполярного импульса.

Известен переменно-токовый способ полярографического анализа (а. с. СССР N399775, М. кл. G 01 N 27/48), согласно которому на электрохимическую ячейку подают напряжение постоянного тока, изменяющееся во времени по линейному закону, и напряжение переменного тока малой амплитуды, в котором имеются горизонтальные участки, и измеряют переменную составляющую тока электрохимической реакции в концах горизонтальных участков полуволн переменного напряжения.

Наиболее близким из аналогов является способ дифференциальной импульсной вольтамперометрии (а. с. СССР N1187063, М. кл. (4) G 01 N 27/48), заключающийся в том, что к электрохимической ячейке прикладывают поляризующее напряжение, включающее развертку напряжения и импульсное напряжение в виде последовательности симметричных разнополярных импульсов с нулевым интервалом времени между ними, и измеряют ток электрохимической ячейки в интервале времени, меньшем длительности импульса, путем выделения и усиления импульсной компоненты тока электрохимической ячейки и последующего алгебраического суммирования токов, вызванных положительным и отрицательным полупериодом одного двуполярного импульса.

Все перечисленные способы не позволяют проводить одновременное определение различных веществ в многокомпонентном растворе с требуемой точностью в случае, если велико взаимное соотношение концентраций или аналитических сигналов, соответствующих определяемым веществам.

Технической задачей предлагаемого технического решения является обеспечение возможности одновременного определения различных веществ в многокомпонентном растворе с требуемой точностью в широком диапазоне взаимного соотношения концентраций определяемых веществ или соответствующих этим веществам аналитических сигналов.

Для решения технической задачи предлагается способ дифференциальной вольтамперометрии, заключающийся в том, что к электрохимической ячейке прикладывают поляризующее напряжение, включающее развертку напряжения и последовательность симметричных двуполярных импульсов с нулевым интервалом времени между ними, и измеряют ток электрохимической ячейки в интервале времени, меньшем длительности полупериода импульса, путем выделения и усиления импульсной компоненты тока электрохимической ячейки и последующего алгебраического суммирования токов, вызванных положительным и отрицательным полупериодом одного двуполярного импульса. По сравнению с наиболее близким аналогом усиление импульсной компоненты тока электрохимической ячейки осуществляют без перегрузки усилителя, перед каждым двуполярным импульсом коэффициент передачи усилителя задают так, чтобы он был максимальным и выходной сигнал усилителя находился в определенном диапазоне. После алгебраического суммирования токов, вызванных положительным и отрицательным полупериодом одного двуполярного импульса, делят полученную сумму на установленный при измерении коэффициент передачи усилителя.

Как известно, дифференциальная вольтамперограмма раствора, содержащего окисляющиеся (восстанавливающиеся) вещества, имеет явно выраженные максимумы (пики). Аналитические сигналы определяемых веществ рассчитываются как один из параметров пика (например, высота плеча). Величина аналитического сигнала определяемого вещества при ряде условий пропорциональна концентрации данного вещества. Таким образом, при регистрации дифференциальной вольтамперограммы раствора, содержащего несколько веществ при большом соотношении их концентраций, можно ожидать большого соотношения аналитических сигналов этих веществ. Для перечисленных ранее способов одновременная обработка таких пиков с требуемой точностью затруднена, так как в случае применения в качестве регистратора аналогового прибора (например, самописца) или при использовании для регистрации сигнала аналого-цифрового преобразователя с фиксированным весом разряда, при масштабировании регистратора на больший пик, меньший пик регистрируется или обрабатывается с большой относительной погрешностью. При масштабировании регистратора на меньший пик амплитуда большего пика превышает динамический диапазон регистрации. В отличие от этих способов предлагаемое решение позволяет обеспечить возможность одновременного определения различных веществ в многокомпонентном растворе с требуемой точностью в широком диапазоне взаимного соотношения концентраций определяемых веществ или соответствующих этим веществам аналитических сигналов. Экспериментально полученные данные подтверждают возможность осуществления предлагаемого технического решения и его преимущества по сравнению с известными.

На фиг. 1 приведена блок-схема устройства для осуществления способа, на фиг. 2 - изображение вольтамперограммы раствора, содержащего медь Cu (II) и кадмий Cd (II) с соотношением аналитических сигналов 600:1, масштабированное на высоту пика меди (аналитические сигналы определяются как высота левого плеча пика), на фиг. 3 - изображение той же вольтамперограммы, масштабированное на высоту пика кадмия.

Способ осуществляется с помощью устройства, приведенного на фиг. 1. Устройство содержит источник 1 последовательности двуполярных импульсов, источник линейно изменяющегося напряжения 2, источник постоянного начального смещения 3, потенциостат 4, токоизмерительный резистор 5, усилитель 6, электрохимическую ячейку 7, синхронизатор 8, устройство выборки-хранения 9, управляемый усилитель 10, аналого-цифровой преобразователь 11, блок управления 12, клемму для подключения регистратора 13.

С помощью такого устройства способ осуществляют следующим образом.

Синхронизатором 8 запускают источник 1 последовательности двуполярных импульсов. Источником 2 линейно изменяющегося напряжения задают напряжение развертки, которое изменяется с устанавливаемой скоростью в требуемом диапазоне напряжений. Источником 3 начального напряжения определяют стабилизированное постоянное напряжение смещения, имеющее требуемую величину и полярность. Все эти напряжения через потенциостат 4 и токоизмерительный резистор 5 поступают на электрохимическую ячейку 7 и вызывают в ней протекание тока. Импульсную компоненту этого тока усиливают усилителем 6 и подают на устройство выборки- хранения 9. С помощью устройства выборки-хранения 9, работа которого синхронизируется импульсами, вырабатываемыми в источнике 1, обеспечивают хранение величины импульсной компоненты на время, достаточное для установки пропорционального значения на выходе усилителя 10 и для аналого-цифрового преобразования в преобразователе 11. Посредством блока управления 12 по сигналам синхронизатора 8 перед каждым двуполярным импульсом устанавливают коэффициент усиления управляемого усилителя 10 таким образом, чтобы этот коэффициент был максимальным и при этом выходной сигнал усилителя находился в определенном диапазоне. Данный диапазон выбирают таким, чтобы усилитель 10 работал без перегрузки при усилении обеих импульсных компонент тока, соответствующих положительному и отрицательному полупериоду одного двуполярного импульса, и одновременно обеспечивалась достаточная для дальнейшей обработки разрядность аналого-цифрового преобразования сигнала, пропорционального максимальной компоненте импульсного тока. Таким образом обеспечивают возможность регистрации с требуемой точностью значений импульсных компонент тока, амплитуда которых может изменяться в широких пределах, в зависимости от свойств и концентрации исследуемых веществ. Управляемым усилителем 10 усиливают импульсные компоненты тока, вызванные положительным и отрицательным полупериодом одного двуполярного импульса, пропорционально установленному коэффициенту усиления. Аналого-цифровым преобразователем 11 преобразуют значения, соответствующие обеим импульсным компонентам тока, в коды. Диапазон входных сигналов аналого-цифрового преобразователя 11 выбирают равным или несколько большим диапазона выходных сигналов управляемого усилителя 10. Посредством блока управления 12 обеспечивают вычисление алгебраической суммы полученных значений и делят полученную сумму на установленный при измерении коэффициент усиления управляемого усилителя 10. Далее вычисленное значение передают через клемму 13 на регистратор, в котором записывают вольтамперограмму в виде зависимости полученных отсчетов от напряжения поляризации. В качестве регистратора может использоваться память электронно-вычислительной машины (ЭВМ). Обработка зарегистрированной таким способом вольтамперограммы позволяет одновременно определить с достаточной точностью аналитические сигналы пиков, взаимное соотношение которых велико.

Экспериментально полученная предлагаемым методом дифференциальная вольтамперограмма раствора, содержащего медь Си (II) в концентрации 7,5•10-5 моль/л и кадмий Cd (II) в концентрации 4,5•10-8 моль/л в фоне (0,33 М KCl + 5•10-5 М Hg2+ + 5•10-3 M HCl) приведена на фиг. 2. Вольтамперограмма была получена на стеклоуглеродном электроде. Вольтамперограмму получили следующим образом: источником 3 начального напряжения задали стабилизированное постоянное напряжение смещения, равное минус 1,4В в течение времени накопления 110 с. Далее источником 2 линейно изменяющегося напряжения задали напряжение развертки, которое изменялось со скоростью 50 мВ/с в диапазоне от 0 до 1,5 В, одновременно синхронизатором 8 запустили источник 1 последовательности двуполярных импульсов частотой 12,5 Гц и амплитудой 20 мВ. Сумму этих напряжений через потенциостат 4 и токоизмерительный резистор 5 номиналом 500 Ом подали на электрохимическую ячейку 7. Импульсную компоненту тока электрохимической ячейки усиливали усилителем 6 и записывали в устройство выборки-хранения 9 в периоды времени длительностью 3,5 мс, отстоящие на 30 мс (75% от длительности полупериода импульса) от начала каждого полупериода. В качестве управляемого усилителя 10 использовали умножающий цифроаналоговый преобразователь (ЦАП), включенный в режиме линейного усилителя напряжения с диапазоном выходных напряжений без перегрузки усилителя от минус 10 до 10 В. В качестве аналого-цифрового преобразователя (АЦП) использовали 12-ти разрядный АЦП последовательного приближения с весом разряда 5 мВ, абсолютной погрешностью преобразования не более половины младшего разряда и с входным диапазоном от минус 10,24 до 10,24 В. В качестве блока управления 12 использовали встроенную микроЭВМ с соответствующей программой. Коэффициент усиления усилителя 10 выбирали равным от 1 до 256 так, чтобы при каждом измерении он был максимальным, и при этом сигнал с выхода управляемого усилителя 10, пропорциональный максимальной компоненте импульсного тока за положительный или отрицательный полупериод одного двуполярного импульса, находился в диапазоне от минус 10 до 10 В. Управляемым усилителем 10 усиливали обе импульсные компоненты тока, вызванные положительным и отрицательным полупериодом одного двуполярного импульса, пропорционально установленному коэффициенту. Аналого-цифровым преобразователем 11 последовательно осуществляли преобразование значений, соответствующих обеим импульсным компонентам тока, в коды. Результат получали в целых 12-ти разрядных числах. Посредством блока управления 12 вычисляли алгебраическую сумму полученных значений и делили полученную сумму на установленный при измерении коэффициент усиления управляемого усилителя 10. Результат получали в виде вещественных чисел. Далее вычисленное значение передавали через клемму 13 к электронно- вычислительной машине (ЭВМ), в которой регистрировали и обрабатывали полученную вольтамперограмму. Расчет аналитических сигналов производился автоматически, численными методами, одновременно для двух элементов. Аналитические сигналы элементов определялись как высота левого плеча пика. Среднее квадратичное отклонение аналитических сигналов в серии из пяти вольтамперограмм, снятых предлагаемым способом, не превысило 5% для обоих определяемых веществ.

Изображение вольтамперограммы на фиг. 2 масштабировано на высоту пика меди, масштаб по оси ординат - 25 000 относительных единиц (отн. ед.) на деление. Аналитический сигнал пика меди составляет 228 000 отн. ед., сигнал пика кадмия - 363 отн. ед. Отношение аналитического сигнала меди к аналитическому сигналу кадмия на данной вольтамперограмме приблизительно равно 600: 1. На фиг. 3 приведено изображение той же вольтамперограммы, масштабированное на высоту пика кадмия, масштаб по оси ординат - 100 отн. ед. на деление.

Таким образом, предлагаемый способ обеспечил возможность одновременного определения аналитических сигналов различных веществ в многокомпонентном растворе с требуемой точностью при большом взаимном соотношении концентраций определяемых веществ и величин, соответствующих определяемым веществам аналитических сигналов.

Похожие патенты RU2155955C1

название год авторы номер документа
ВОЛЬТАМПЕРОМЕТРИЧЕСКИЙ АНАЛИЗАТОР 1999
  • Литвинов С.А.
  • Жерновой А.Д.
  • Темердашев З.А.
RU2155956C1
Способ дифференциальной импульсной вольтамперометрии 1983
  • Гинзбург Григорий Исаакович
  • Гинзбург Валерий Григорьевич
  • Салихджанова Рашида Мухамет-Фатиховна
SU1187063A1
СПОСОБ ВОЛЬТАМПЕРОМЕТРИЧЕСКОГО АНАЛИЗА 1994
  • Вяселев М.Р.
  • Чугунов И.А.
  • Сухарев А.А.
  • Султанов Э.И.
RU2101697C1
СПОСОБ ИНВЕРСИОННОЙ ВОЛЬТАМПЕРОМЕТРИИ 2009
  • Шипунов Борис Павлович
  • Стась Ирина Евгеньевна
  • Пельганчук Татьяна Александровна
RU2411514C1
ЭКСПРЕССНЫЙ СПОСОБ ИМПУЛЬСНОЙ ПЕРЕМЕННО-ТОКОВОЙ ВОЛЬТАМПЕРОМЕТРИИ 2011
  • Ермаков Сергей Сергеевич
  • Аверяскина Елена Олеговна
  • Яснев Иван Михайлович
RU2465577C1
СПОСОБ ИНВЕРСИОННОГО ВОЛЬТАМПЕРОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ МИКРОПРИМЕСЕЙ МЕДИ (II) И СУРЬМЫ (III) В ЦИНКОВОМ ЭЛЕКТРОЛИТЕ 2004
  • Боровков Георгий Александрович
  • Монастырская Валентина Ивановна
RU2297626C2
УСТРОЙСТВО ДЛЯ ВОЛЬТАМПЕРОМЕТРИЧЕСКОГО АНАЛИЗА (ВАРИАНТЫ) 1992
  • Иванов Ю.И.
RU2054169C1
ЭКСТРАКЦИОННО-ВОЛЬТАМПЕРОМЕТРИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ ЦИНКА, КАДМИЯ, СВИНЦА И МЕДИ 2011
  • Темерев Сергей Васильевич
  • Логинова Ольга Борисовна
RU2476853C1
ЭКСТРАКЦИОННО-ВОЛЬТАМПЕРОМЕТРИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ ЦИНКА, КАДМИЯ, СВИНЦА И МЕДИ В ПРИРОДНЫХ ВОДАХ 2008
  • Темерев Сергей Васильевич
  • Логинова Ольга Борисовна
RU2383014C1
Способ вольтамперометрии 1987
  • Салихджанова Рашида Мухамет-Фатиховна
  • Гинзбург Григорий Исаакович
  • Иванов Валерий Григорьевич
SU1518767A1

Иллюстрации к изобретению RU 2 155 955 C1

Реферат патента 2000 года СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ВОЛЬТАМПЕРОМЕТРИИ

Изобретение относится к вольтамперометрии и полярографии и может быть применено в приборах, предназначенных для многоэлементного переменно-токового вольтамперометрического анализа и в переменно-токовых полярографах. Технический результат заключается в обеспечении возможности одновременного определения различных веществ в многокомпонентном растворе с требуемой точностью в широком диапазоне взаимного соотношения концентраций определяемых веществ или соответствующих этим веществам аналитических сигналов. Сущность: к электрохимической ячейке прикладывают поляризующее напряжение, включающее развертку напряжения и последовательность симметричных двуполярных импульсов с нулевым интервалом времени между ними, и измеряют ток электрохимической ячейки в интервале времени, меньшем длительности полупериода импульса, путем выделения и усиления импульсной компоненты тока электрохимической ячейки без перегрузки усилителя, перед каждым двуполярным импульсом коэффициент передачи усилителя задают так, чтобы он был максимальным и при этом выходной сигнал усилителя находился в определенном диапазоне, после алгебраического суммирования токов, вызванных положительным и отрицательным полупериодом одного двуполярного импульса, делят полученную сумму на установленный при измерении коэффициент передачи усилителя. 3 ил.

Формула изобретения RU 2 155 955 C1

Способ дифференциальной вольтамперометрии, заключающийся в том, что в электрохимической ячейке прикладывают поляризующее напряжение, включающее развертку напряжения и последовательность симметричных разнополярных импульсов с нулевым интервалом времени между ними, и измеряют ток электрохимической ячейки в интервале времени, меньшем длительности полупериода импульса, путем выделения и усиления импульсной компоненты тока электрохимической ячейки и последующего алгебраического суммирования токов, вызванных положительным и отрицательным полупериодом одного разнополярного импульса, отличающийся тем, что усиление импульсной компоненты тока электрохимической ячейки осуществляют без перегрузки усилителя, перед каждым разнополярным импульсов коэффициент передачи усилителя задают так, чтобы он был максимальным и при этом выходной сигнал усилителя находился в определенном диапазоне, и после алгебраического суммирования токов, вызванных положительным и отрицательным полупериодом одного разнополярного импульса делят полученную сумму на установленный при измерении коэффициент передачи усилителя.

Документы, цитированные в отчете о поиске Патент 2000 года RU2155955C1

Способ дифференциальной импульсной вольтамперометрии 1983
  • Гинзбург Григорий Исаакович
  • Гинзбург Валерий Григорьевич
  • Салихджанова Рашида Мухамет-Фатиховна
SU1187063A1
СПОСОБ ВОЛЬТАМПЕРОМЕТРИЧЕСКОГО АНАЛИЗА 1994
  • Вяселев М.Р.
  • Чугунов И.А.
  • Сухарев А.А.
  • Султанов Э.И.
RU2101697C1
ПЕРЕМЕННОТОКОВЫЙ СПОСОБ ПОЛЯРОГРАФИЧЕСКОГО АНАЛИЗА 0
  • Авторы Изобретени
SU399775A1
Способ вольтамперометрии 1987
  • Салихджанова Рашида Мухамет-Фатиховна
  • Гинзбург Григорий Исаакович
  • Иванов Валерий Григорьевич
SU1518767A1
СПОСОБ ВОЛЬТАМПЕРОМЕТРИИ 1996
  • Кулагин Евгений Михайлович
RU2096778C1
БОНД А.М
Полярографические методы в аналитической химии
- М.: Химия, 1983, с
Счетная линейка для вычисления объемов земляных работ 1919
  • Раабен Е.В.
SU160A1
US 4396464 A1, 02.09.1983.

RU 2 155 955 C1

Авторы

Литвинов С.А.

Жерновой А.Д.

Темердашев З.А.

Даты

2000-09-10Публикация

1999-05-12Подача