СПОСОБ ПРОИЗВОДСТВА ВЫСОКОЗАКИСНОГО АГЛОМЕРАТА Российский патент 2000 года по МПК C22B1/16 

Описание патента на изобретение RU2157854C2

Изобретение относится к термическим способам окускования железных тонкозернистых концентратов и отходов металлургического производства и может быть использовано при производстве агломерата в черной металлургии.

Известен способ получения офлюсованного магнезиального агломерата а.с. N 578220, С 22 B 1/16, 1990 N 26, в котором улучшение металлургических свойств агломерата достигается введением с конвертерным шлаком соединений алюминия и марганца, которые ограничивают образование и способствуют растворение тугоплавкой фазы - мервинита.

Необходимое количество конвертерного шлака определяют расчетным путем исходя из значений отношения (Al2O3+MnO)/MgO в конвертерном шлаке и железорудной части шихты.

Недостаток способа заключается в том, что он применим лишь при производстве агломерата из железорудных материалов, содержащих магнезиальную пустую породу (ковдорский, коршуновский концентраты).

Наиболее близким по технической сущности является способ производства высокозакисного агломерата а. с. N 1574656 C 22 B 1/16, 1990 N 24. Способ отличается высоким содержанием в аглошихте вюститных материалов (60 - 90%), что способствует увеличению количества закиси железа в агломерате выше 35%.

В качестве вюститных материалов в изобретении предлагается использовать прокатную окалину, содержащую более 60% вюстита, и традиционный железорудный концентрат. С целью повышения прочности и содержания FeO в верхней части спека предлагается в верхний слой (массовая доля 30%) дозировать 80 - 100% всей прокатной окалины в шихте. В качестве флюсов используют известняк и известь в количестве (3%), обеспечивающем основность агломерата по отношению CaO/SiO2= 0,7. Содержание твердого топлива составляют 7% (мас.) по отношению к рудно-флюсовой части шихты.

Недостатками способа являются:
1. Необходимость формирования двух разных по составу шихт для нижнего и верхнего слоев загрузки, что усложняет всю технологическую схему формирования шихты. Для реализации этого способа на существующих аглофабриках потребуется их коренная реконструкция, в частности дооборудование каждой агломашины еще одной поточной линией шихтовых бункеров с дозирующими весоизмерительными устройствами;
2. Использование прокатной окалины, содержащей более 60% вюстита, ограничивает объем производства высокозакисного агломерата из-за незначительного ее количества. Например, на заводе с годовым производством 7 млн. т количество такой окалины составляет 3 - 5 тыс.т;
3. Спекание шихты с содержанием в верхнем слое 0,8 - 1,0 прокатной окалины от общего ее количества в шихте приводит к формированию неравномерной структуры агломерата по высоте:
из шихты верхнего слоя образуется расплав практически из оксидов железа (FeO+Fe2O3) с узким низкотемпературным интервалом плавления, а шихта нижнего слоя представляет собой обычную шихту, типичную для производства агломерата.

Сосредоточение прокатной окалины в верхнем слое снижает интенсивность спекания, т.к. при остывании структура затвердевающей массы из оксидов железа представляет собой корку с плохой газопроницаемостью.

4. Способ не регламентирует наиболее важные параметры химического состава агломерата, предназначенного для промывки горна доменной печи. К ним относятся: основность и соотношение оксидов Ca, Mg и Al, оказывающих влияние на температуру размягчения агломерата и вязкость расплава;
5. В способе не указан тепловой режим спекания, в частности общее содержание топлива в шихте и его распределение по слоям загрузки.

Задача, на решение которой направлено техническое решение, - обеспечить производство высокооснованого (FeO≥20%) агломерата с низкой основностью (CaO+MgO)/(SiO2+Al2O3)≤0,8 при отношении MgO/CaO=0,3-0,5.

По физико-химическим свойствам такой агломерат может применяться как по прямому назначению (для выплавки чугуна и стали), так и для специальных целей, например, для промывки горнов доменных печей и наведения шлаков в сталеплавильных агрегатах.

Технический результат достигается тем, что способ спекания высокозакисного агломерата включает ввод в шихту железорудного концентрата и железосодержащих отходов металлургического производства в виде окалины, офлюсование шихты, смешивание, окомкование и загрузку аглошихты на агломашину двумя слоями с различным содержанием топлива по слоям. При этом содержание железа в концентрате выше 63%, а в качестве флюсов используют известь и доломитизированный известняк в количестве, обеспечивающем в агломерате отношение MgO/CaO равное 0,3 - 0,5, а основность (CaO+MgO)/(SiO2+Al2O3) равную или менее 0,8.

В составе железорудной части шихты массовое соотношение концентрата и окалины составляет 1:(1...3) соответственно.

В нижний слой загружают 25 - 35% всей шихты с содержанием топлива 2,3 - 2,5% при общем содержании топлива в шихте 3,8 - 4,7%.

Существенные признаки, характеризующие изобретение:
1. В качестве железосодержащих компонентов агломерационной шихты используют магнетитовый концентрат (Feобщ≥63%) и окалину.

2. Массовое соотношение концентрата и окалины в железорудной части шихты составляют 1:(1...3) соответственно.

3. Флюсами служат известь и доломитизированный известняк в количестве, обеспечивающем получение агломерата основностью (CaO+MgO)/(SiO+Al2O3), равной или менее 0,8 и отношением MgO/CaO равным 0,3 - 0,5.

4. Соотношение слоев шихты при загрузке на агломашину составляет (%, мас.):
нижний слой - 25-35
верхний слой - 75-65
5. Содержание топлива в шихте и его распределение по слоям загрузки составляет (%, мас.):
нижний слой - 2,3-2,5
верхний слой - 4,0-5,5
общее содержание 3,8-4,7
Признаки, отличительные от прототипа:
1. В качестве железосодержащих компонентов агломерационной шихты используют магнетитовый концентрат (Feобщ≥63%) и окалину.

2. Массовые соотношения концентрата и окалины в железорудной части шихты составляют 1:(1-3) соответственно.

3. Флюсами служат известь и доломитизированный известняк в количестве, обеспечивающем получение агломерата основностью (CaO+MgO)/(SiO2+Al2O3) равной или менее 0,8 и отношением MgO/CaO равным 0,3-0,5.

4. Соотношение слоев шихты при загрузке на агломашину составляет (%, мас.):
нижний слой - 25-35,
верхний слой - 75-65
5. Содержание топлива в шихте и его распределение по слоям загрузки составляет (%, мас.):
нижний слой - 2,3-2,5,
верхний слой - 4,0-5,5
общее содержание - 3,8-4,7.

Известно, что качество окомкования шихт с высоким содержанием тонкоизмельченных концентратов зависит от соотношения количества частиц, выполняющих роль центров (зародышей) гранул, и количества тонких классов шихты, накатываемых на эти зародыши. Наилучшее соотношение классов комкующей и комкуемой части шихты (0,5-3,0 мм/0-0,05 мм) составляет 0,4-0,6 (ж. Сталь, 1987 N 5, с. 8-15).

В шихте, представленной тонкоизмельченными магнетитовыми концентратами с содержанием класса 0-0,05 мм более 90%, центрами окомкования в основном являются частицы возврата, флюса и топлива. В предлагаемом способе при заданной низкой основности и маслом содержании флюсов центрами окомкования могут выступать частицы крупных классов окалины.

Задача оптимизации соотношения классов комкующей и комкуемой части шихты решается путем изменения соотношения количества концентрата и окалины в рудной части шихты с учетом количества возврата.

Расход возврата в шихту определяется величиной выхода годного продукта (+5 мм), составляющего на многих аглофабриках более 70%.

Выход годного в 70% определил также нижнюю границу общего расхода топлива и его распределения по слоям загрузки.

При содержании в шихте 20-30% возврата соотношение классов комкующей и комкуемой части шихты (0,5-3,0 мм/0-0,05 мм) составляет при содержании в рудной части шихты 50% окалины -0,3-0,4, а при 70-75% окалины -0,5-0,65.

Содержание окалины 50% является нижней, а 75% - верхней границами содержания окалины в рудной части шихты (с учетом заданного расхода возврата), обеспечивающими оптимальные условия окомкования шихты.

Верхняя граница расхода топлива диктуется снижением скорости спекания и производительности из-за увеличения газодинамического сопротивления зоны высоких температур при спекании. Немаловажным фактором является также увеличение себестоимости агломерата из-за повышенного расхода топлива.

Нижнюю границу расхода топлива наряду с величиной выхода годного определило минимальное содержание FeO в агломерате,равное 20%,которое позволяет эффективно использовать такой материал в доменных печах в качестве промывочного.

Верхняя граница по основности (CaO+MgO)/(SiO2+Al2O3) равная 0,8 принята из условий шлакового режима доменных печей.

Отношение MgO/CaO равное 0,3-0,5 принято из условий расхода извести в шихту 20-35 кг/т агломерата и полной замены во флюсах известняка на доломитизированный известняк.

Соотношение слоев при загрузке продиктовано, с одной стороны, необходимостью обеспечить беспрепятственный сход спека со спекательных тележек без его приварки к колосникам в условиях работы без донной постели, и с другой стороны, требованиями повышенного температурно-теплового и восстановительного режима спекания на возможно большей толщине спекаемого слоя для получения агломерата с повышенным содержанием FeO.

Этим условиям отвечает соотношение масс нижнего и верхнего слоев загрузки как 0,25-0,35 к 0,75-0,65.

Такое соотношение в производственных условиях реализуется без осложнений в работе оборудования, обеспечивает требуемый режим окомкования шихты и ее укладки на спекательные тележки агломашин.

Предложенный способ опробован на чаше диаметром 260 мм, спекание вели при разрежении 10 кПа с высотой слоя 350 мм, масса спекаемой шихты 35-42 кг, загружаемой двумя слоями с сегрегацией по высоте слоя.

Железорудная часть шихты состояла из тонкоизмельченных магнетитовых концентратов КМА (Fe - 66,0-68,5%) и окалины НЛМК (Fe - 55-70%).

Флюсами служили доломитизированный известняк и известь, в контрольных, базовых и спеканиях по прототипу использовали известняк. Топливом служила коксовая мелочь. Количество возврата в шихте соответствовало его выходу при спекании.

Предварительными спеканиями (табл. 1) установлено оптимальное распределение твердого топлива по слоям загрузки. В качестве примера приведены результаты спеканий при массовом соотношении нижнего и верхнего слоев загрузки как 30:70% и общем содержании топлива в шихте от 3,5 до 5,0%.

Рудная часть шихты состояла из 70% и 30% концентрата, основность (CaO+MgO)/(SiO2+Al2O3)=0,8
Из приведенных в табл. 1 данных следует, что оптимальным содержанием топлива в шихте нижнего слоя является 2,3-2,5% при общем содержании топлива в шихте 3,8-4,7%.

В табл. 2 представлены результаты опытов, выполненных для определения оптимального соотношения массы шихты по слоям загрузки.

Спекания вели при найденных оптимальных содержании и распределении твердого топлива в шихте по слоям (табл. 1). Каждый опыт включал спекания при основности (CaO+MgO)/(SiO2+Al2O3) 0,6 и 0,8 для массового соотношения окалины и концентрата в рудной части шихты 50:50 и 70:30. В табл. 2 значения показателей спекания, приведенные в числителе, относятся к основности 0,6, а приведенные в знаменателе - к основности 0,8.

Анализ данных из табл. 2 показывает, что в пределах изменения соотношения масс верхнего и нижнего слоев при загрузке от 65:35 до 75:25 величины выхода годного (≥70%) и содержания FeО а агломерате (≥20) удовлетворяют заданным условиям по прочности и FeO (за исключением спекания в опыте 9, отмеченного звездочкой, где при доле окалины в рудной части шихты 0,5 и основности 0,8 выход годного и содержание FeO находится на нижнем пределе заданных значений).

В табл. 3 представлены результаты спеканий при оптимизированных параметрах соотношения массы слоев при загрузке (70:30) и содержания топлива по слоям (Тв.с.=4,4%; Тн.с.=2,5%; Тобщ.=3,8%).

Спекания выполнены для нахождения оптимального содержания окалины в рудной части шихты.

Из представленных в табл. 3 данных следует, что наилучшие показатели по удельной производительности, прочности и содержанию FeO в агломерате достигнуты при соотношении концентрата и окалины как 1:(1-3).

При более низком содержании окалины в рудной части, например 40% (оп. 13), существенно снижается удельная производительность из-за низкой скорости спекания вследствие неудовлетворительного окомкования шихты (соотношение количества классов 0,5-3 мм/0-0,05 мм≤0,3).

Ниже заданных пределов опускается выход годного и содержание FeO.

При содержании в рудной части шихты более 75% окалины (оп. 18) шихта практически на окомковывается (соотношение количества классов 0,5-3 мм/0-0,05 мм≥0,6), резко снижается скорость спекания и удельная производительность.

Отношение MgO/CaO в агломерате (<0,3) не удовлетворяет условиям шлакового режима доменной плавки.

В табл. 4 приведены результаты спеканий по прототипу (оп. 19) и предлагаемой технологии, а также контрольный опыт по базовому варианту (агломерат, производимый на аглофабрике Новолипецкого металлургического комбината).

Анализ представленных в табл. 4 результатов показывает, что предлагаемый способ спекания при регламентируемых им параметрах дает наиболее высокие показатели спекания и качества агломерата.

Себестоимость агломерата, произведенного по предлагаемому способу, ниже, чем для обычного агломерата.

Эффективность применения этого агломерата для промывки горнов и стен доменных печей в условиях НЛМК выражается в уменьшении удельного расхода кокса на 0,3 кг и увеличении суточного производства чугуна на 25 т.

Похожие патенты RU2157854C2

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ПРОМЫВОЧНОГО АГЛОМЕРАТА 1999
  • Греков В.В.
  • Зевин С.Л.
  • Иноземцев Н.С.
  • Коршиков Г.В.
  • Коршикова Е.Г.
  • Кузнецов А.С.
  • Науменко В.В.
  • Семенов А.К.
  • Хайков М.А.
RU2158316C1
СПОСОБ ПРОИЗВОДСТВА ПРОМЫВОЧНОГО АГЛОМЕРАТА 2004
  • Терентьев В.Л.
  • Савинов В.Ю.
  • Кузнецов В.Г.
  • Вдовин К.Н.
  • Ким Т.Ф.
  • Терентьев А.В.
RU2254384C1
СПОСОБ СПЕКАНИЯ АГЛОМЕРАЦИОННОЙ ШИХТЫ 2002
  • Коршиков Г.В.
  • Греков В.В.
  • Семенов А.К.
  • Зевин С.Л.
  • Кузнецов А.С.
  • Коршикова Е.Г.
  • Михайлов В.Г.
  • Животиков С.И.
RU2228375C1
СПОСОБ СПЕКАНИЯ АГЛОМЕРАТА С РАЗЛИЧНОЙ ОСНОВНОСТЬЮ ИЗ ЖЕЛЕЗОСОДЕРЖАЩИХ ОТХОДОВ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА 2002
  • Коршиков Г.В.
  • Греков В.В.
  • Семенов А.К.
  • Зевин С.Л.
  • Григорьев В.Н.
  • Яриков И.С.
  • Коршикова Е.Г.
  • Чуйков В.В.
  • Кузнецов А.С.
  • Емельянов В.Л.
RU2221880C2
СПОСОБ ПРОМЫВКИ ГОРНА ДОМЕННОЙ ПЕЧИ 1998
  • Франценюк И.В.
  • Коршиков Г.В.
  • Иноземцев Н.С.
  • Зевин С.Л.
  • Григорьев В.Н.
  • Яриков И.С.
  • Коршикова Е.Г.
RU2136761C1
СПОСОБ ПРОИЗВОДСТВА ОФЛЮСОВАННОГО АГЛОМЕРАТА 1997
  • Зевин С.Л.
  • Греков В.В.
  • Коршиков Г.В.
  • Кузнецов А.С.
  • Кукарцев В.М.
  • Панченко В.Ф.
  • Чернобривец Б.Ф.
RU2110589C1
ПРОМЫВОЧНЫЙ АГЛОМЕРАТ И СПОСОБ ЕГО ПРОИЗВОДСТВА 2008
  • Гущин Юрий Михайлович
  • Кобелев Владимир Андреевич
  • Напольских Сергей Александрович
  • Смирнов Леонид Андреевич
  • Сухарев Анатолий Григорьевич
  • Чернавин Александр Юрьевич
  • Чепелев Александр Васильевич
RU2403294C2
СПОСОБ ПРОИЗВОДСТВА ОФЛЮСОВАННОГО ЖЕЛЕЗОРУДНОГО АГЛОМЕРАТА 1999
  • Панишев Н.В.
  • Тахаутдинов Р.С.
  • Краснов С.Г.
  • Антонюк В.В.
  • Гибадуллин М.Ф.
  • Некеров В.Д.
  • Нечепуренко О.Н.
  • Верблюденко А.П.
  • Терентьев В.Л.
RU2149907C1
СПОСОБ ПРОМЫВКИ ГОРНА ДОМЕННОЙ ПЕЧИ 2005
  • Греков Василий Васильевич
  • Зубцов Александр Николаевич
  • Ляпин Сергей Семенович
  • Коршиков Геннадий Васильевич
  • Иноземцев Николай Степанович
  • Семенов Анатолий Кузьмич
RU2303070C2
СПОСОБ ПРОИЗВОДСТВА ЖЕЛЕЗОРУДНОГО АГЛОМЕРАТА 2005
  • Носов Сергей Константинович
  • Крупин Михаил Андреевич
  • Меламуд Самуил Григорьевич
  • Бобров Владимир Павлович
  • Волков Дмитрий Николаевич
  • Сухарев Анатолий Григорьевич
  • Шацилло Владислав Вадимович
  • Дудчук Игорь Анатольевич
RU2283354C1

Иллюстрации к изобретению RU 2 157 854 C2

Реферат патента 2000 года СПОСОБ ПРОИЗВОДСТВА ВЫСОКОЗАКИСНОГО АГЛОМЕРАТА

Изобретение относится к термическим способам окускования железных тонкозернистых концентратов и отходов металлургического производства и может быть использовано при производстве агломерата в черной металлургии. Способ предусматривает использование в качестве железосодержащих компонентов шихты концентрат с содержанием Feобщ ≥ 63% и окалину в соотношении 1 : 1 - 3 соответственно, офлюсование, смешивание, окомкование и загрузку шихты на агломашину двумя слоями и ее спекание. В качестве флюсов используют известь и доломитизированный известняк в количестве, обеспечивающем основность агломерата CaO + MgO / SiО2 + Al2O3 ≤ 0,8 при отношении MgO/CaO + 0,30 - 0,50. В нижний слой загружают 25 - 35% от общего количества шихты с содержанием в шихте нижнего слоя топлива 2,3 - 2,5% при общем содержании его в шихте 3,8 - 4,7%. 4 табл.

Формула изобретения RU 2 157 854 C2

Способ производства высокозакисного агломерата (FeO ≥ 20%), включающий ввод в шихту железорудного концентрата и железосодержащих отходов металлургического производства в виде окалины, офлюсование, смешивание, окомкование и загрузку шихты на агломашину двумя слоями и ее спекание, отличающийся тем, что шихту, состоящую из концентрата (Feобщ ≥ 63%) и окалины при массовом соотношении 1 : 1 - 3 соответственно, офлюсовывают известью и доломитизированным известняком в количестве, обеспечивающем основность агломерата CaO + MgO/SiO2 + Al2O3 ≤ 0,8 при отношении MgO/CaO = 0,30 - 0,50, и загружают в нижний слой 25 - 35% от общего количества шихты с содержанием в шихте нижнего слоя топлива 2,3 - 2,5% при общем содержании его в шихте 3,8 - 4,7%.

Документы, цитированные в отчете о поиске Патент 2000 года RU2157854C2

Способ производства высокозакисного агломерата 1988
  • Нижегородова Тамара Евстафьевна
  • Власенко Валентина Николаевна
  • Тимошенко Валентин Иванович
  • Иванов Александр Кириллович
  • Игнатов Николай Владимирович
  • Праздник Ася Николаевна
  • Демидов Виталий Алексеевич
SU1574656A1
Способ агломерации рудных материалов 1986
  • Якубовский Владислав Петрович
  • Вижанский Виктор Дмитриевич
  • Покотило Евгений Петрович
  • Трухан Сергей Петрович
SU1361191A1
СПОСОБ ПРОИЗВОДСТВА ДЕСЕРТА 2013
  • Творогова Антонина Анатольевна
  • Грызунов Алексей Алексеевич
  • Каухчешвили Николай Эрнестович
  • Авдеева Юлия Владимировна
  • Квасенков Олег Иванович
RU2524444C1

RU 2 157 854 C2

Авторы

Греков В.В.

Зевин С.Л.

Истомин В.С.

Коршиков Г.В.

Коршикова Е.Г.

Кузнецов А.С.

Науменко В.В.

Хайков М.А.

Даты

2000-10-20Публикация

1998-11-24Подача