Изобретение относится к термоэлектрическим устройствам, основанным на эффекте Зеебека и эффекте Пельтье, и предназначено для прямого преобразования тепловой энергии в электрическую или для одновременного охлаждения одной среды и нагрева другой среды с использованием электрической энергии.
Предшествующий уровень техники
Известны термоэлектрические модули, содержащие полупроводниковые элементы p-типа и n-типа проводимости, каждый из которых выполнен с двумя противолежащими торцевыми поверхностями, расположенными на одинаковом расстоянии, токопроводы, каждый из которых выполнен с двумя сторонами, с одной из которых соединены торцевые поверхности, по меньшей мере, двух полупроводниковых элементов разного типа проводимости, и пластины из электроизоляционного материала, например керамики на основе окиси алюминия, соединенные с другими сторонами токопроводов (EP-A2, N 0455051, 1991, кл. МПК (5) H 01 L 35/32).
В таком термоэлектрическом модуле при нагреве одной пластины и охлаждении другой пластины возникает разность напряжений (термоЭДС), что дает возможность использовать его в качестве термоэлектрического генератора, а при подводе к модулю постоянного тока происходит нагрев одной пластины и охлаждение другой пластины, что дает возможность использовать модуль в качестве устройства для нагрева одной среды и охлаждения другой среды, т.е. термоэлектрический модуль может быть использован в качестве преобразователя энергии.
Для эффективной работы термоэлектрического модуля в качестве преобразователя энергии необходимо, чтобы его пластины обладали хорошей теплопроводностью. Пластины из керамики или из других электроизоляционных материалов имеют недостаточную теплопроводность, в результате чего известные термоэлектрические модули с такими пластинами не обеспечивают высокую эффективность преобразования энергии.
Известны также термоэлектрические модули, содержащие полупроводниковые элементы p-типа проводимости, полупроводниковые элементы n-типа проводимости, каждый из которых выполнен с двумя противолежащими первой и второй торцевыми поверхностями, расположенными на одинаковом расстоянии, токопроводы, выполненные каждый с двумя противолежащими первой и второй сторонами, с первой из которых соединены торцевые поверхности полупроводниковых элементов разного типа проводимости, элементы из теплопроводного материала, имеющие поверхности, расположенные с зазором относительно вторых сторон токопроводов, и слои электроизоляционного полимерного материала, расположенные в зазоре между вторыми сторонами токопроводов и указанными поверхностями элементов из теплопроводного материала (GB - A, N 1025687, 1966, кл. НКИ H 1 K).
Слои электроизоляционного материала в таких термоэлектрических модулях необходимы потому, что теплопроводные материалы имеют одновременно хорошую электропроводность, а элементы из теплопроводного и, следовательно, электропроводного материала должны быть надежно электрически изолированы от токопроводов. Для обеспечения эффективной работы таких термоэлектрических модулей необходимо, чтобы слой электроизоляционного полимерного материала имел оптимальную толщину: если толщина этого слоя слишком велика, то ухудшаются преобразующие свойства модуля, а если толщина слишком мала, то возможен пробой слоя электроизоляционного полимерного материала электрическим напряжением при работе модуля.
Раскрытие изобретения
В основу данного изобретения была поставлена задача создать термоэлектрический модуль, обладающий при достаточной прочности и жесткости высокими преобразующими свойствами.
Эта задача решена тем, что в термоэлектрическом модуле, содержащем, по меньшей мере, один полупроводниковый элемент p-типа проводимости, по меньшей мере, один полупроводниковый элемент n-типа проводимости, причем каждый из указанных полупроводниковых элементов выполнен с двумя противолежащими первой и второй торцевыми поверхностями, расположенными на одинаковом расстоянии, по меньшей мере, один токопровод, выполненный с двумя противолежащими первой и второй сторонами, с первой из которых соединены торцевые поверхности, по меньшей мере, двух полупроводниковых элементов разного типа проводимости, по меньшей мере, один элемент из тепло- и электропроводного материала, имеющий поверхность, расположенную с зазором относительно второй стороны, по меньшей мере, одного токопровода, и слой электроизоляционного полимерного материала, расположенный в зазоре между второй стороной шины и указанной поверхностью элемента из тепло- и электропроводного материала, согласно изобретению толщина указанного слоя электроизоляционного полимерного материала равна от 0,004 до 0,05 указанного расстояния между противолежащими первой и второй торцевыми поверхностями каждого полупроводникового элемента.
При этом рекомендуется, чтобы минимальная толщина указанного элемента из тепло- и электропроводного материала была равна не менее 0,2 расстояния между противолежащими первой и второй торцевыми поверхностями каждого полупроводникового элемента.
Краткое описание фигур чертежей
Фиг. 1 представляет собой общий вид лучшего варианта осуществления термоэлектрического модуля согласно данному изобретению.
Фиг. 2 представляет собой вид в поперечном разрезе лучшего варианта осуществления термоэлектрического модуля.
Лучший вариант осуществления изобретения
Термоэлектрический модуль, показанный на фиг. 1 и фиг. 2, а содержит полупроводниковые элементы 1 p-типа проводимости и полупроводниковые элементы 2 n-типа проводимости. Термоэлектрический модуль может иметь один полупроводниковый элемент 1 p-типа проводимости и один полупроводниковый элемент 2 n-типа проводимости (не показано на чертежах) или, как показано на фиг. 1 и 2, несколько полупроводниковых элементов 2 n-типа проводимости, которые расположены в шахматном порядке. Каждый элемент 1 и 2 имеет две противолежащие торцевые поверхности соответственно 1', 1'' и 2', 2'', которые расположены на одинаковом расстоянии a (фиг. 2). Термоэлектрический модуль содержит также токопроводы 3, каждый из которых выполнен с двумя противолежащими первой и второй сторонами соответственно 3' и 3''. Со стороной 3' каждого токопровода посредством, например, пайки соединены обращенные в одну сторону торцевые поверхности 1', 2' или 1'', 2'' двух соседних полупроводниковых элементов 1, 2 разного типа проводимости (фиг. 2) или могут быть соединены обращенные в одну сторону торцевые поверхности нескольких полупроводниковаых элементов 1, 2 (не показано на чертежах). Термоэлектрический модуль с несколькими полупроводниковыми элементами 1 и несколькими полупроводниковыми элементами 2 имеет несколько токопроводов 3, расположенных с разных сторон от элементов 1, 2 (фиг. 1 и 2). Термоэлектрический модуль с одним полупроводниковым элементом 1 и одним полупроводниковым элементом 2 может иметь один токопровод 3 (не показано на чертежах). С крайними полупроводниковыми элементами соединены также токопроводы 5, 6 (фиг. 1), предназначенные для подключения термоэлектрического модуля к источнику постоянного напряжения при использовании термоэлектрического модуля в качестве охлаждающего и нагревательного устройства или для подключения к потребителю электроэнергии при использовании термоэлектрического модуля в качестве преобразователя тепловой энергии в электрическую энергию.
Термоэлектрический модуль содержит также один (не показано на чертежах) или два элемента 7 и 8 (фиг. 1 и 2) из тепло- и электропроводного материала, каждый из которых имеет поверхность соответственно 7' и 8', расположенную с зазором (не обозначен) относительно вторых сторон 3'' токопроводов 3. Элементы 7 и 8 могут быть выполнены из алюминия, стали, титана, тантала или другого материала. В каждом зазоре между поверхностями 7', 8' и 3'' расположен слой 9, 10 из электроизоляционного полимерного материала (на фиг. 1 часть элемента 7 и слоя 10 условно удалена). В качестве такого материала может быть использован полиимид, обладающий хорошими адгезионными свойствами и достаточной термостойкостью при тех температурах, при которых работает термоэлектрический модуль, и температурах, используемых при изготовлении модуля. Каждый слой 9, 10 из электроизоляционного полимерного материала благодаря своим адгезионным свойствам прочно соединена непосредственно с элементом 7 или 8 и со вторыми сторонами 3'' токопроводов 3 соответственно. Тем самым, модуль представляет собой сэндвич, обладающий высокой прочностью и жесткостью. Толщина b каждого слоя 9, 10 равна от 0,004 до 0,05 расстояния a между противолежащими торцевыми поверхностями 1', 1'' и 2', 2'' каждого полупроводникового элемента 1 и 2 соответственно (на фиг. 2 размер b условно показан не в масштабе). Минимальная толщина c каждого элемента 7, 8 из тепло- и электропроводного материала составляет не менее 0,2 расстояния a между противолежащими торцевыми поверхностями 1', 1''и 2', 2'' каждого полупроводникового элемента 1 и 2 соответственно. Соотношение между величинами a, b и c выбрано из следующих соображений. При соотношении между величинами b и a меньшем, чем указано, возможен пробой слоя электроизоляционного полимерного материала электрическим напряжением при работе термоэлектрического модуля. При соотношении между величинами b и a большем, чем указано, происходит ухудшение эффективности работы термоэлектрического модуля из-за повышенного термического сопротивления слоя электроизоляционного полимерного материала. При соотношении между величинами c и a меньшем, чем указано, может произойти недопустимое уменьшение прочности и жесткости термоэлектрического модуля. Увеличение толщины каждого элемента 7, 8 сверх указанного значения (в разумных пределах) практически не влияет на работу термоэлектрического модуля. Элементы 7, 8 могут иметь не только форму пластин, показанную на чертежах, но и другую форму, в том числе с оребрением (не показано на чертежах), или же могут представлять собой конструктивные элементы различных устройств (не показано на чертежах).
Описанный термоэлектрический модуль работает следующим образом.
При использовании термоэлектрического модуля в качестве преобразователя тепловой энергии в электрическую производят нагрев одного из элементов 7, 8 и охлаждение другого из этих элементов. Тепло через слои 9, 10 передается к полупроводниковым элементам 1, 2 и отводится от них. В результате действия эффекта Зеебека на противолежащих торцевых поверхностях 1', 1'' и 2', 2'' полупроводниковых элементов 1, 2 возникает разность напряжений, и постоянный электрический ток через токопроводы 5, 6 поступает к потребителю.
При использовании термоэлектрического модуля в качестве охлаждающего и нагревательного устройства к токопроводам 5, 6 подводят постоянное электрическое напряжение. При этом в результате действия эффекта Пельтье происходит охлаждение одних противолежащих торцевых поверхностей полупроводниковых элементов 1, 2 и нагрев других противолежащих торцевых поверхностей полупроводниковых элементов 1, 2 и, соответственно, холод и тепло через слои 9, 10 передаются к элементам 7, 8, от которых происходит их отвод в соответствующую среду.
Промышленная применимость
Изобретение может быть применено в преобразователях тепловой энергии в электрическую, использующих тепло отработанных газов или иные источники тепла, в устройствах охлаждения и термостабилизации элементов электронной, компьютерной, лазерной и радиотехнической техники, в холодильниках и кондиционерах, в медицинской криогенной аппаратуре, в химическом оборудовании и в других устройствах для охлаждения и нагрева.
название | год | авторы | номер документа |
---|---|---|---|
ТЕРМОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ | 2014 |
|
RU2570429C1 |
ТЕРМОЭЛЕКТРИЧЕСКИЙ ОХЛАЖДАЮЩИЙ МОДУЛЬ | 2013 |
|
RU2534445C1 |
ТЕРМОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ | 2012 |
|
RU2511274C1 |
ТЕРМОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ | 2003 |
|
RU2234765C1 |
ТЕРМОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ЭНЕРГИИ | 2015 |
|
RU2604180C1 |
ПОЛУПРОВОДНИКОВЫЙ ЭЛЕМЕНТ ДЛЯ ТЕРМОЭЛЕКТРИЧЕСКОГО МОДУЛЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2011 |
|
RU2563550C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКИХ БАТАРЕЙ | 2004 |
|
RU2248070C1 |
Термоэлектрический модуль. | 2020 |
|
RU2740589C1 |
ПРОСТРАНСТВЕННО ОРИЕНТИРОВАННЫЙ ТЕРМОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2015 |
|
RU2611562C1 |
ТЕРМОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2006 |
|
RU2325731C1 |
Использование: в термоэлектрических устройствах. Термоэлектрический модуль содержит полупроводниковые элементы р-типа и n-типа проводимости, соединенные токопроводами, и теплопроводные металлические элементы, каждый из которых соединен с токопроводами посредством электроизоляционного полимерного материала, например полиимида. Толщина (b) слоя электроизоляционного полимерного материала равна 0,004 - 0,05 расстояния (а) между противолежащими торцевыми поверхностями каждого полупроводникового элемента. Толщина (с) каждого теплопроводного металлического элемента равна не менее 0,2 расстояния (а) между противолежащими торцевыми поверхностями каждого полупроводникового элемента. Технический результат - повышение эффективности работы термоэлектрического модуля. 1 з.п.ф-лы, 2 ил.
RU 2075138 C1, 10.03.1997 | |||
Агломерационная машина | 1980 |
|
SU1067333A1 |
US 4946511 A, 07.08.1990 | |||
Способ извлечения дяацгтон-2-кето-1-гулоновой кислоты из гидратных маточников | 1958 |
|
SU117743A1 |
Авторы
Даты
2000-11-10—Публикация
1997-06-17—Подача