Изобретение относится к области производства катализаторов нефтепереработки, в частности к производству катализаторов гидрообессеривания нефтяного сырья.
Известна технология получения катализаторов гидрообессеривания, включающая последовательные пропитки предварительно сформованного твердого кислотного носителя раствором аммиачной комплексной соли молибдена или вольфрама и раствором соли кобальта или никеля с промежуточной (между пропитками) и завершающей термообработками, заключающимися в сушке и прокаливании предшественника катализатора [Н. Р. Газимзянов, И.И. Задко, С.Л. Мунд, А.Н. Старцев. Упрощение технологии пропитки при получении катализаторов гидроочистки. Химия и технология топлив и масел. 1991, N 1, с. 26]. Изучено влияние ряда параметров пропитки носителя на количество нанесенного активного металла на катализатор, а следовательно, на его гидрообессеривающую активность.
Недостатком указанного способа является невозможность получения стабильного раствора, обеспечивающего высокий уровень активности катализатора без специальных добавок-стабилизаторов.
Известен способ приготовления катализаторов для гидрообессеривания нефтяного сырья путем последовательной пропитки при pH=3-4 предварительно сформованного в виде фигурных экструдатов γ-оксида алюминия растворами парамолибдата аммония и раствором нитрата кобальта. Пропитку проводят с промежуточной сушкой. По завершении пропитки предшественник катализатора подвергают термообработке, заключающейся в сушке и прокаливании [Патент РФ N 2052288, В 01 J 35/02]. Применение известного способа позволяет получить катализатор с определенным ограниченным количеством нанесенного металла при заданных условиях.
Недостатком указанного способа является необходимость повышения концентрации пропиточных растворов для получения катализаторов с высоким содержанием нанесенного активного металла. Это приводит к снижению стабильности растворов, снижению эффективности пропитки, увеличению стоимости катализатора.
Целью предлагаемого способа является увеличение степени пропитки катализатора при невысоких концентрациях пропиточного раствора, обеспечивающих его стабильность, снижение стоимости катализатора.
Сущность предлагаемого способа заключается в том, что раствор парамолибдата аммония и нитрата кобальта подвергают обработке постоянным магнитным полем перед пропиткой носителя. В результате пересечения магнитного поля потоком жидкости происходит увеличение активности катионов металлов в растворе, а также смачивающей способности раствора. Это приводит к облегчению проникновения наносимых металлов в частицы носителя и, следовательно, увеличению концентрации нанесенного металла.
Предлагаемый способ осуществляется следующим образом.
Предварительно приготовленный раствор парамолибдата аммония (концентрация 80-160 г/л) направляют снизу вверх в омагничивающее устройство электромагнитного исполнения с сердечником [Заявка N 98104229/25 (004435) C 02 F 1/48]. Причем устройство расположено вертикально или наклонно во избежание образования воздушных пробок. Поток пропиточного раствора перпендикулярно пересекает постоянное магнитное поле с линейной скоростью 0,5 - 1,5 м/с. Напряженность поля в зазорах устройства выбирают в интервале от 80 до 120 кА/м и задают путем изменения силы постоянного тока в блоке питания устройства (указанный интервал выбран на основании предварительных исследований). Обработанным раствором парамолибдата аммония при pH=3-4, температуре 70-80oC пропитывают предварительно сформованные фигурные частицы оксида алюминия с поперечным сечением в виде равнолучевой шестиугольной звезды радиусом от 2,0 до 3,5 мм. Полученный предшественник катализатора высушивают при температуре 105-120oC в течение 4-5 часов. Затем пропитку проводят раствором нитрата кобальта (концентрация 40-60 г/л), который обрабатывают в магнитном поле аналогично раствору парамолибдата аммония. Завершающей стадией способа является сушка предшественника катализатора при 105-120oC в течение 4-5 часов и прокаливание при 400-500oC в течение 1,5-2 часов. Количество нанесенного на катализатор металла определяли рентгенофлюоресцентным анализом.
Подготовка пропиточных растворов.
Первый пропиточный раствор: в 1 л воды растворили 120 г парамолибдата аммония, полученный раствор пропустили через омагничивающее устройство с линейной скоростью 1,0 м/с. Напряженность магнитного поля составляла 110 кА/м.
Второй пропиточный раствор: в 1 л воды растворили 50 г нитрата кобальта, полученный раствор обработали аналогичным образом в магнитном поле. Обработку магнитным полем растворов производят непосредственно перед операцией пропитки.
Пример.
100 г предварительно сформованных фигурных частиц оксида алюминия с поперечным сечением в виде равнолучевой шестиугольной звезды радиусом 3,5 мм пропитывали обработанным в магнитном поле раствором парамолибдата аммония (62 мл, концентрация 120 г/л) при pH=3,5 и температуре 80oC, сушили при 120oC в течение 4 часов, затем пропитывали предварительно обработанным в магнитном поле раствором нитрата кобальта (58 мл концентрация 50 мг/л), сушили при температуре 120oC в течение 4 часов и прокаливали при температуре 450oC в течение 2 часов.
В результате были получены образцы катализаторов, состав которых приведен в таблице.
Таким образом, предлагаемый способ, включающий пропитку кислотного носителя раствором, обработанным в постоянном магнитном поле, позволяет увеличить степень пропитки носителя активными металлами на 7-15% (относительных) при неизменных концентрациях пропиточных растворов, температуре, времени пропитки, сушки и завершающей термообработки.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ АЛЮМОКОБАЛЬТМОЛИБДЕНОВОГО КАТАЛИЗАТОРА ГИДРООБЕССЕРИВАНИЯ ДИЗЕЛЬНЫХ ФРАКЦИЙ | 1994 |
|
RU2082499C1 |
КАТАЛИЗАТОР, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ПРОЦЕСС ГИДРООБЕССЕРИВАНИЯ ДИЗЕЛЬНЫХ ФРАКЦИЙ | 2006 |
|
RU2314154C1 |
КАТАЛИЗАТОР ГИДРООБЕССЕРИВАНИЯ ДИЗЕЛЬНОЙ ФРАКЦИИ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ | 2006 |
|
RU2313392C1 |
КАТАЛИЗАТОР, СПОСОБ ПОЛУЧЕНИЯ НОСИТЕЛЯ, СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА И ПРОЦЕСС ГИДРООБЕССЕРИВАНИЯ ДИЗЕЛЬНЫХ ФРАКЦИЙ | 2006 |
|
RU2311959C1 |
КАТАЛИЗАТОР, СПОСОБ ЕГО ПОЛУЧЕНИЯ, СПОСОБ ПОЛУЧЕНИЯ НОСИТЕЛЯ ДЛЯ ЭТОГО КАТАЛИЗАТОРА И ПРОЦЕСС ГИДРООБЕССЕРИВАНИЯ ДИЗЕЛЬНЫХ ФРАКЦИЙ | 2006 |
|
RU2313389C1 |
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ (ВАРИАНТЫ) И ПРОЦЕСС ГИДРООБЕССЕРИВАНИЯ ДИЗЕЛЬНЫХ ФРАКЦИЙ | 2007 |
|
RU2342994C1 |
СПОСОБ ПОЛУЧЕНИЯ МАЛОСЕРНИСТЫХ НЕФТЯНЫХ ФРАКЦИЙ | 1998 |
|
RU2140964C1 |
КАТАЛИЗАТОР ГИДРООЧИСТКИ ДИЗЕЛЬНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2014 |
|
RU2566307C1 |
КАТАЛИЗАТОР ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2001 |
|
RU2197323C1 |
КАТАЛИЗАТОР ГЛУБОКОЙ ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ | 2012 |
|
RU2497586C2 |
Изобретение относится к области производства катализаторов нефтепереработки, в частности катализаторов гидрооблагораживания. Целью предлагаемого способа является увеличение степени пропитки катализатора при невысоких концентрациях пропиточного раствора, обеспечивающих его стабильность и снижение стоимости катализатора. Сущность предлагаемого способа заключается в том, что раствор парамолибдата аммония и нитрата кобальта подвергают обработке постоянным магнитным полем перед пропиткой носителя. В результате пересечения магнитного поля потоком жидкости происходит увеличение активности катионов металлов в растворе, а также смачивающей способности раствора. Это приводит к облегчению проникновения наносимых металлов в частицы носителя и, следовательно, увеличению концентрации нанесенного металла. Указанная цель достигается воздействием на пропиточные растворы постоянного магнитного поля напряженностью 80-120 кА/м при скорости потока через генератор магнитного поля 0,5-1,5 м/с. Предлагаемое изобретение позволяет увеличить степень пропитки носителя на 7-15 отн. % при неизменных концентрациях пропиточных растворов, температуре, времени пропитки, сушки и завершающей термообработки. 1 з.п. ф-лы, 1 табл.
RU 2052288 C1, 20.01.1996 | |||
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРОВ ДЛЯ СИНТЕЗА УГ'ЛБВОДОРОДОВ | 0 |
|
SU196729A1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ | 1995 |
|
RU2073567C1 |
RU 94010013 A1, 30.12.1995 | |||
EP 0704239 A3, 03.04.1996 | |||
US 5182250 A, 26.01.1993. |
Авторы
Даты
2001-05-27—Публикация
2000-02-03—Подача