Изобретение относится к области биотехнологии, оно может быть использовано в области медицинской и клинической биохимии, фармацевтической промышленности, молекулярной фармакологии, в экологической диагностике, а также в области биосенсорики и нанотехнологии.
Жидкокристаллические дисперсии на основе как свободных нуклеиновых кислот (НК), так и их комплексов с различными высокомолекулярными биологически активными соединениями, т.е. сложные пространственные образования, "строительными блоками" которых являются молекулы НК, вызывают все больший интерес исследователей как основа для создания интегральных биодатчиков.
В настоящее время известны два типа жидкокристаллических дисперсий, в которых в качестве "строительных блоков" использованы молекулы НК.
К первому типу относятся жидкокристаллические дисперсии, формируемые в результате фазового исключения молекул НК в водно-солевых полимерсодержащих растворах [патент РФ No 2032895]. Для этого типа дисперсий характерна аномальная отрицательная полоса в спектре кругового дихроизма (КД). Наличие этой полосы открывает принципиальную возможность для использования этого типа дисперсий в качестве чувствительных элементов (биодатчиков) для определения окрашенных биологически важных веществ.
Недостаток такого типа дисперсий состоит в том, что в этом случае "жесткая" холестерическая структура жидкокристаллической дисперсии не меняется при действии биологически активных соединений; это ограничивает их применение в биосенсорике. Кроме того, недостатки рассмотренного типа жидкокристаллических дисперсий НК состоят в следующем:
1. ограниченный интервал ионных условий, в котором существуют такие жидкокристаллические дисперсии, что делает невозможным их использование в качестве биодатчиков для определения окрашенных соединений, образующих комплексы с молекулами НК в условиях низкой ионной силы растворов;
2. необходимость использования высокой концентрации полимерного растворителя, обеспечивающего поддержание стабильной структуры такого типа дисперсий, что влияет на легкость и простоту их применения в качестве чувствительных элементов;
3. возможность определения только ограниченного круга окрашенных биологически активных соединений, взаимодействующих с молекулами НК;
4. недостаточная чувствительность к действию различных биологически активных или химических соединений, обусловленная наличием в их составе только одного "строительного блока", а именно НК, что существенно ограничивает возможность применения таких жидкокристаллических дисперсий в качестве биодатчиков широкого спектра действия в медицине, экологии и биотехнологии.
Известен также второй тип жидкокристаллических дисперсий на основе комплексов НК с поликатионами. Холестерическая жидкокристаллическая дисперсия комплексов (НК-поликатион), аномальная оптическая активность которой может проявляться только в очень узком интервале условий (например, ионная сила раствора и т.д.) [Докл. Акад. Наук, 1999, т. 365, С. 400-402], не может быть использована в качестве биодатчиков.
Недостатками этого типа жидкокристаллических дисперсий, не позволяющими использовать их в качестве биодатчиков, являются следующие:
1. ограниченный набор новых физико-химических свойств, в частности, отсутствие аномальной оптической активности, которая является наиболее эффективным критерием [патент РФ N 2107280], позволяющим следить за изменением свойств молекул НК при действии на эти молекулы биологически активных или химических соединений;
2. сложность однозначного предсказания свойств таких дисперсий, связанная с недостаточно изученными механизмами сложных химических процессов, необходимых для их создания;
3. жесткость структуры, обусловленная гексагональной упаковкой такой дисперсии, что приводит к невозможности ее "отклика" на действие биологически активных соединений;
4. узкий интервал условий существования таких дисперсий (ионная сила раствора и т.д.), что приводит к невозможности их использования в качестве чувствительных элементов биосенсорных устройств.
Отмеченные выше недостатки обоих типов жидкокристаллических дисперсий на основе молекул НК или их комплексов с поликатионами существенно ограничивают или приводят к невозможности их применения в качестве интегральных биодатчиков в медицине, экологии и биотехнологии.
Известна молекулярная конструкция [патент РФ N 2139933], представляющая собой ансамбль из жестких двухцепочечных молекул НК, упорядоченных в пространстве в виде комплекса с антибиотиком в составе лиотропной холестерической жидкокристаллической дисперсии, сформированной в водно-солевом растворе нейтрального полимера, а соседние молекулы НК фиксированы в пространстве полимерными хелатными "сшивками".
Известен также интегральный тип биодатчиков, созданный на основе молекулярной конструкции НК [патент РФ N 2139933]. Для этих биодатчиков характерно наличие аномальной оптической активности, дающей возможность для аналитического использования этих биодатчиков.
Известен способ создания молекулярной конструкции [патент РФ N 2139933] путем формирования лиотропной жидкокристаллической дисперсии НК в водно-солевом растворе нейтрального полимера, включающий стадии формирования жидкокристаллической дисперсии НК, образование комплекса (НК-антибиотик) и стадии хелатообразования при обработке дисперсии комплекса (НК-антибиотик) раствором соли двухвалентной меди.
Недостатками известной молекулярной конструкции, интегрального биодатчика на ее основе и способа создания являются следующие:
1. использование высокой концентрации полимерного растворителя, необходимой для поддержания исходной холестерической структуры молекулярной конструкции, что ограничивает ее применение в качестве чувствительного элемента биосенсорных устройств;
2. многостадийный процесс формирования молекулярной конструкции на основе молекул НК, что ограничивает легкость и простоту создания и применения этого типа биодатчиков.
В основу предлагаемого изобретения положена задача создать новый тип жидкокристаллических дисперсий, упростить способ их формирования для того, чтобы сформированные жидкокристаллические дисперсии были стабильными, с предсказуемыми и регулируемыми свойствами, с расширенным интервалом условий существования, с пространственной структурой, параметры которой менялись бы в ответ на действие различных биологически активных соединений, что позволит использовать такую жидкокристаллическую дисперсию в качестве интегрального биодатчика, т.е. биодатчика широкого спектра действия, меняющего свои свойства при наличии в анализируемой среде биологически активных соединений, опасных, независимо от их природы, для здоровья человека и животных.
Поставленная задача решена созданием лиотропной холестерической жидкокристаллической дисперсии, представляющей собой ансамбль из упорядоченных в пространстве жестких двухцепочечных молекул НК, причем согласно изобретению жидкокристаллическая дисперсия НК упорядочена в виде комплекса (НК-хитозан) в водно-солевом растворе в широком интервале ионных условий.
Хитозаны являются полусинтетическими аминополисахаридами, структура и свойства которых интенсивно изучаются в последние годы [Новые перспективы в исследовании хитина и хитозана. Материалы Пятой конференции. Москва - Щелково, изд-во ВНИРО, 1999, с. 7-295]. Хитозаны используются в пищевой, медицинской и косметической промышленности, а также исследуются как потенциальные радиопротекторы (вещества, предохраняющие организм человека от действия радиоактивного излучения). Поскольку в состав молекул хитозанов входят N-ацетиламиногруппы и положительно заряженные аминогруппы, они образуют комплексы с молекулами НК, что приводит к конденсации молекул НК.
Полученный новый тип жидкокристаллических дисперсий представляет собой ансамбль из жестких двухцепочечных молекул НК, связанных в комплекс с хитозаном и образующих частицы лиотропной холестерической жидкокристаллической дисперсии, причем взаимное расположение молекул НК в пространстве зафиксировано за счет образования "сшивок" (НК-хитозан). Отличительной особенностью таких жидкокристаллических дисперсий является их существование в водно-солевом растворе физиологической ионной силы (0,15-0,3 М NaCl), сочетаемое с их лабильностью, т.е. возможностью перестроения их пространственной структуры в ответ на действие многих биологически активных соединений, а также сохранение присущих таким дисперсиям физико-химических (в частности, оптических) свойств, что открывает новые возможности для их использования в качестве интегральных биодатчиков.
При этом молекулы НК в составе комплекса (НК-хитозан), а также "сшивки" между молекулами НК могут гидролизоваться под действием специфических ферментов. Причем "сшивки" между молекулами НК могут вытесняться из состава комплекса (НК-хитозан) под действием различных факторов внешней среды.
Возможно формировать комплекс, используя дезоксирибонуклеиновую кислоту (ДНК), а именно добавляя к раствору ДНК низкой молекулярной массы раствор хитозана до образования комплекса (ДНК-хитозан).
Наличие разных по своей химической природе составных частей комплекса ("строительных блоков"), а именно молекул НК и хитозана, свойства которых могут меняться при действии на них разных химических или биологически активных соединений, в сочетании с сохранением легко детектируемой аномальной оптической активности, присущей холестерической жидкокристаллической структуре [Yu. М. Yevdokimov, S.G. Skuridin, V.I.Salyanov, 1988, Liq. Crystals, v. 3, N 11, p. 1443-1459], открывает возможность применения предлагаемой изобретением жидкокристаллической дисперсии в качестве интегрального биодатчика, т. е. биодатчика, оптические свойства которого могут, в частности, меняться при действии различных биологически активных соединений, нарушающих как структуру молекул НК, так и хитозана, а также факторов, нарушающих как целостность структуры НК, так и хитозана.
При этом вместо молекул ДНК в качестве "строительных блоков" можно использовать любые жесткоцепные полимеры, которые образуют холестерические жидкокристаллические дисперсии и структура которых позволяет осуществлять реакции комплексообразования с молекулами хитозана.
Желательно в качестве "строительного блока" использовать молекулы линейной двухцепочечной ДНК низкой молекулярной массы или двухцепочечных синтетических полидезоксинуклеотидов, поскольку эти полимеры не только образуют холестерические жидкокристаллические дисперсии при фазовом исключении, но и препараты которых полно охарактеризованы, доступны и относительно дешевы.
В качестве сшивающего агента могут быть использованы другие водорастворимые природные или синтетические поликатионы (например, полиаминосахара), способные взаимодействовать с молекулами НК, в результате чего образуется холестерическая жидкокристаллическая дисперсия.
Целесообразно в качестве такого сшивающего агента использовать водорастворимые молекулы хитозанов, содержащие в своем составе не только положительно заряженные аминогруппы, но и способные к образованию "сшивок" между молекулами НК.
Желательно, чтобы молекулы хитозанов содержали в своем составе до 50 мономерных звеньев и образовывали комплекс с молекулами НК, приводящий к формированию лиотропной холестерической жидкокристаллической дисперсии, обладающей аномальной оптической активностью.
Желательно, чтобы в состав лиотропной холестеричекой жидкокристаллической дисперсии входили молекулы антрациклинового антибиотика, присутствие которых обеспечивает новые свойства жидкокристаллической дисперсии.
Поставленная задача решена также способом создания лиотропной холестерической жидкокристаллической дисперсии комплекса (НК-хитозан), в котором согласно изобретению дисперсия формируется в одну стадию путем смешения водного раствора хитозана и водно-солевого раствора НК, приводящего к формированию литропной холестерической жидкокристаллической дисперсии комплекса (НК-хитозан), в которой соседние молекулы НК фиксированы в пространстве за счет "сшивок" (НК-хитозан), с образованием трехмерного ансамбля, сохраняющего аномальные оптические свойства, присущие холестерической структуре.
Предлагаемый способ создания лиотропной холестерической жидкокристаллической дисперсии комплекса (НК-хитозан) и ее использование в качестве интегрального биодатчика осуществляют следующим образом:
- формируют в водно-солевом растворе лиотропную холестерическую жидкокристаллическую дисперсию комплекса (НК-хитозан);
- измеряют аномальную оптическую активность полученного образца в области поглощения азотистых оснований НК; появление интенсивной аномальной полосы в спектре КД служит доказательством образования лиотропной холестерической жидкокристаллической дисперсии комплекса (НК-хитозан);
- добавляют химические или биологически активные вещества, способные тем или иным способом нарушить целостность "сшивки" хотя бы в одном месте, и по уменьшению амплитуды аномальной полосы в спектре КД определяют наличие названных веществ.
Для лучшего понимания настоящего изобретения ниже приведены примеры, характеризующие способ изготовления лиотропной холестерической жидкокристаллической дисперсии комплекса (ДНК-хитозан), а также ее применение в качестве интегрального биодатчика со ссылками на прилагаемые фигуры, на которых:
Фиг. 1 характеризует спектр поглощения водно-солевого раствора ДНК до (кривая 1) и после (кривая 2) добавления хитозана в координатах: "A - λ - длина волны (нм)".
ДНК эритроцитов цыплят ("Reanal", Венгрия); молекулярная масса ДНК (0,3 - 0,6)•106 Да;
CДНК = 16,1 мкг/мл; CХит = 10 мкг/мл; 0,15 М NaCl+0,001 М фосфатный буфер, pH ~6,7.
Фиг. 2 характеризует спектры КД исходного водно-солевого раствора ДНК (кривая 1) и лиотропной холестерической жидкокристаллической дисперсии комплекса (ДНК-хитозан) (кривая 2) в координатах: "ΔA = (AL-AR) - λ - длина волны (нм)";
ΔA - круговой дихроизм (мм); 1 мм = 1•10-5опт. единиц; L = 1 см;
CДНК = 17 мкг/мл; CХит = 10 мкг/мл;
0,15 М NaCl+0,001 М фосфатный буфер, pH ~6,7.
Фиг. 3 характеризует спектры КД лиотропной холестерической жидкокристаллической дисперсии комплекса (ДНК-хитозан) до (кривая 1) и после (кривая 2) обработки антрациклиновым антибиотиком дауномицином (ДАУ) в координатах: "ΔA = (AL-AR) - λ - длина волны (нм)";
CДНК = 17 мкг/мл; CХит = 10 мкг/мл; CДАУ = 18,5•10-6 М;
0,15 М NaCl+0,001 М фосфатный буфер, pH ~6,7.
Фиг. 4 характеризует спектры КД лиотропной холестерической жидкокристаллической дисперсии комплекса (ДНК-хитозан) в присутствии дауномицина до (кривая 1) и после (кривые 2-3) обработки хитиназой в течение, соответственно, 20 и 51 мин в координатах: "ΔA = (AL-AR) - λ -длина волны, (нм)";
CДНК = 17 мкг/мл; CХит = 10 мкг/мл; CДАУ = 18,5•10-6 М;
0,15 М NaCl+0,001 М фосфатный буфер, pH ~6,7.
Фиг. 5 характеризует спектры КД лиотропной холестерической жидкокристаллической дисперсии комплекса (ДНК-хитозан) (кривая 1), этой же дисперсии в присутствии дауномицина (кривая 2), а также спектры КД этих дисперсий после обработки гепарином (кривые 3 и 4, соответственно) в координатах: "ΔA = (AL-AR) - λ - длина волны, (нм)";
CДНК = 17 мкг/мл; CХит = 10 мкг/мл; CДАУ = 18,5•10- М;
Cгепарин = 1 мкг/мл;
0,15 М NaCl+0,001 М фосфатный буфер, pH ~6,7.
Пример 1. Способ создания лиотропной холестерической жидкокристаллической дисперсии комплекса (ДНК-хитозан) в водно- солевом растворе.
1.1. Создание лиотропной холестерической жидкокристаллической дисперсии комплекса (ДНК-хитозан).
1.1. Готовят исходный водный раствор хитозана с концентрацией 5 мг/мл.
1.2. Лиотропную холестерическую жидкокристаллическую дисперсию комплекса (ДНК-хитозан) готовят в одну стадию, для чего к 2 мл водно-солевого раствора (0,15 М NaCl+0,001 М фосфатный буфер, pH ~6,7) ДНК эритроцитов цыплят ("Reanal", Венгрия; мол. масса ДНК ~(0,3 - 0,6)•106 Да, CДНК = 17 мкг/мл) добавляют 4 мкл раствора хитозана, приготовленного по п. 1, при перемешивании и затем регистрируют спектр поглощения и КД (фиг. 1 и 2). Появление кажущейся оптической плотности в спектре поглощения в области длин волн, превышающих 300 нм (фиг. 1), свидетельствует об образовании частиц дисперсии, рассеивающих падающее УФ-излучение. Появление интенсивной положительной полосы (фиг. 2) в спектре КД (λ ~ 270 нм) свидетельствует об образовании лиотропной холестерической жидкокристаллической дисперсии комплекса (ДНК-хитозан), в которой между молекулами ДНК образуются "сшивки" из молекул хитозана, фиксирующие упорядоченное (анизотропное) расположеннее в частицах дисперсии.
Таким образом в водно-солевом растворе получают лиотропную холестерическую жидкокристаллическую дисперсию комплекса (ДНК-хитозан), состоящую из линейных двухцепочечных молекул ДНК, упорядоченных в пространстве и "сшитых" молекулами хитозана.
Пример 2. Изменение свойств лиотропной холестерической жидкокристаллической дисперсии комплекса (ДНК-хитозан) в присутствии антрациклинового антибиотика.
В качестве представителя группы антрациклиновых антибиотиков, к которым относятся карминомицин, адриамицин, аклациномицин, виоламицин и др., ниже использован дауномицин.
2.1. Препарат ДАУ ("Sigma") растворяют в 1 мл дистиллированной воды при перемешивании.
2.2. К 2 мл лиотропной холестерической жидкокристаллической дисперсии комплекса (ДНК-хитозан), приготовленной по п. 1.2, добавляют 10 мкл раствора по п. 2.1 (CДАУ=3,7•10-3 М) при перемешивании и затем регистрируют спектр КД (фиг. 3). Таким образом получают комплекс между молекулами ДНК, "сшитыми" хитозаном в составе жидкокристаллической дисперсии, и дауномицином.
Изменение знака полосы в спектре КД, зависящее от концентрации ДАУ, а также других соединений, образующих интеркаляционные комплексы с молекулами ДНК в составе жидкокристаллической дисперсии комплекса (ДНК-хитозан), может быть использовано для определения этих соединений.
Тот факт, что молекулы многих химических и биологически активных соединений расщепляют хитозановые "сшивки" или вытесняют их из состава комплекса, открывает возможность для применения холестерических жидкокристаллических дисперсий комплекса (ДНК-хитозан) или смешанного комплекса (ДНК-ДАУ-хитозан) в качестве интегрального биодатчика. Нарушение целостности "сшивки" или ее "уход" из состава комплекса приведет к уменьшению оптического сигнала, генерируемого дисперсией. Уменьшение оптического сигнала связано с концентрацией определяемого химического или биологически активного соединения в пробе.
Ниже приведены примеры применения холестерических жидкокристаллических дисперсий комплекса (ДНК-хитозан) или смешанного комплекса (ДНК-ДАУ-хитозан) для обнаружения фермента, расщепляющего молекулу хитозана (хитиназа), или вытесняющего хитозан из состава комплекса (гепарин).
Пример 3. Определение наличия хитиназы в растворе.
3.1. К 2 мл лиотропной холестерической жидкокристаллической дисперсии комплекса (ДНК-ДАУ-хитозан), по п. 2.2, добавляют 100 мкл раствора хитиназы при перемешивании и регистрируют спектры КД в области поглощения ДНК (230-350 нм) с интервалом 10-15 мин.
При добавлении хитиназы амплитуда отрицательной полосы в спектре КД (фиг. 4) резко уменьшается. Это означает, что обработка лиотропной холестерической жидкокристаллической дисперсии комплекса (ДНК-ДАУ-хитозан) хитиназой приводит к разрушению хитозановых "сшивок", фиксирующих холестерическую структуру дисперсии. Разрушение "сшивок" приводит к переходу молекул ДНК из упорядоченного жидкокристаллического состояния, характеризуемого высокой оптической активностью, в изотропное состояние с низкой оптической активностью.
Таким образом, при наличии соответствующей калибровочной кривой при помощи лиотропной холестерической жидкокристаллической дисперсии комплекса (ДНК-ДАУ-хитозан) можно определять концентрацию хитиназы в анализируемой жидкости.
Пример 4. Определение наличия гепарина в растворе.
4.1. Готовят водный раствор гепарина с концентрацией 1 мг/мл.
4.2. К 2 мл лиотропной холестерической жидкокристаллической дисперсии комплекса (ДНК-хитозан), по п. 1.2, добавляют 2 мкл раствора гепарина по п. 4.1 при перемешивании и регистрируют спектры КД в области поглощения ДНК (230-350 нм) с интервалом 2-3 мин.
4.3. К 2 мл лиотропной холестерической жидкокристаллической дисперсии комплекса (ДНК-ДАУ-хитозан), по п. 2.2, добавляют 2 мкл раствора гепарина по п. 4.1 при перемешивании и регистрируют спектры КД в области поглощения ДНК (230-350 нм) с интервалом 2-3 мин.
Добавление гепарина сопровождается резким уменьшением амплитуды как положительной, так и отрицательной полос в спектре КД (фиг. 4). Это означает, что обработка лиотропной холестерической жидкокристаллической дисперсии комплекса (ДНК-хитозан) или (ДНК-ДАУ-хитозан) гепарином сопровождается образованием более прочного комплекса (хитозан-гепарин), что приводит к "уходу" молекул хитозана из состава холестерических жидкокристаллических дисперсий и переходу молекул ДНК в оптически неактивное изотропное состояние.
Таким образом, примеры 2 - 4 показывают, что лиотропные холестерические жидкокристаллические дисперсии комплекса (ДНК-хитозан) или (ДНК-ДАУ-хитозан) позволяют обнаруживать наличие в анализируемой жидкости соединений, разрушающих хитозановые "сшивки" или вытесняющих их из состава дисперсии.
Следовательно, лиотропные холестерические жидкокристаллические дисперсии комплекса (ДНК-хитозан) или (ДНК-ДАУ-хитозан) представляют собой интегральный биодатчик, свойства которого могут меняться в присутствии в анализируемой жидкости достаточно широкого круга соединений различной природы.
Предлагаемое изобретение может быть использовано в биосенсорике, медицинской и клинической биохимии, в молекулярной фармакологии, а также в наноэлектронике. Лиотропные холестерические жидкокристаллические дисперсии комплекса (НК-хитозан) предназначены для использования в медицине в качестве интегрального биодатчика, реагирующего, в частности, на изменение концентрации антиопухолевых антибиотиков, образующих интеркаляционные комплексы с ДНК, в клинической биохимии, молекулярной фармакологии и молекулярной энзимологии для определения биологически активных соединений, разрушающих хитозановые "сшивки" или вытесняющие их из состава дисперсии, а также соединений, гидролизующих молекулы ДНК.
Изобретение относится к биотехнологии. Получена лиотропная холестерическая жидкокристаллическая дисперсия как интегральный биодатчик для определения в анализуемой жидкости биологически активных соединений, представляющая собой комплекс двуцепочечных молекул нуклеиновой кислоты (НК) с хитозаном в водно-солевом растворе физиологической ионной силы. Дополнительно комплекс содержит молекулы антрациклинового антибиотика. Создание дисперсии осуществляют смешиванием водного раствора хитозана и водно-солевого раствора НК с образованием хитозановых "сшивок", фиксирующих молекулы НК в составе дисперсии, которая обладает интенсивной полосой в спектре кругового дихроизма при λ ~ 270 нм. 2 с. и 5 з.п. ф-лы, 5 ил.
МОЛЕКУЛЯРНАЯ КОНСТРУКЦИЯ НА ОСНОВЕ ЖИДКОКРИСТАЛЛИЧЕСКОЙ ДИСПЕРСИИ НУКЛЕИНОВОЙ КИСЛОТЫ КАК ИНТЕГРАЛЬНЫЙ БИОДАТЧИК И СПОСОБ ЕЕ СОЗДАНИЯ | 1998 |
|
RU2139933C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕПАРИНА | 1997 |
|
RU2123008C1 |
Дорожная спиртовая кухня | 1918 |
|
SU98A1 |
Авторы
Даты
2001-06-27—Публикация
2000-06-09—Подача