СТЕКЛОПЛАВИЛЬНОЕ УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ СТЕКЛОВОЛОКНА Российский патент 2001 года по МПК C03B37/09 

Описание патента на изобретение RU2171235C1

Изобретение относится к оборудованию для производства непрерывного стеклянного волокна двустадийным методом.

Известен малогабаритный стеклоплавильный сосуд для выработки непрерывного стекловолокна, содержащий трубки и V-образный нагревательный элемент соединенный в один узел с фильтрующей сеткой (а.с. СССР N 234627, кл. C 03 B 37/09, 1967).

Недостатком известной конструкции является повышенная материалоемкость и низкая производительность при получении непрерывного стекловолокна.

Известен также стеклоплавильный сосуд для выработки непрерывного стекловолокна, включающий корпус, фильерную пластину с фильерами, токоподводы, нагревательный и ячеистый гомогенизирующий экраны (а.с. СССР N 722860, кл. C 03 B 37/09, 1978).

Недостатком этой конструкции является ее высокая материалоемкость и, следовательно, низкая экономичность процесса получения стекловолокна.

Наиболее близким по технической сущности и достигаемому результату является стеклоплавильное устройство, в котором фильерная пластина выполнена со средней плотностью фильер 3-4 шт/см2, отношение высоты к длине корпуса стеклоплавильного сосуда от 1,1 до 1,2, а отношение суммарной средней площади поперечного сечения экранов к средней площади поперечного сечения фильерной пластины составляет 3,5 - 5,0 (патент на изобретение Российской Федерации N 2147297, кл. C 03 B 37/09, 1999).

Недостатком прототипа является низкая стабильность процесса формования тонких стеклянных волокон (диаметром 9 мкм и менее) и повышенный расход драгоценных металлов.

Задачей настоящего изобретения является снижение материалоемкости конструкции стеклоплавильного устройства для выработки тонких непрерывных стеклянных волокон двустадийным методом.

Технический результат достигается тем, что в известном стеклоплавильном устройстве для получения стекловолокна, включающем корпус с фильерной пластиной со средней площадью фильер 3-4 шт/см2, токоподводы, нагревательный экран (или экраны) с отверстиями для прохождения стекломассы и выхода газов, отношение суммарной средней площади поперечного сечения экрана(ов) к средней площади поперечного сечения фильерной пластины составляет от 2 до 3,4, а соотношение высоты корпуса стеклоплавильного устройства к его длине - от 1,0 до 1,2, причем площадь единичного отверстия для прохождения стекломассы в экране(нах) не превышает площади выходного отверстия фильеры.

При этом средняя площадь поперечного сечения определяется как отношение объема элемента конструкции к его длине в направлении прохождения электрического тока.

Таким образом, за счет оптимальных соотношений высоты корпуса H и его длины L, средней площади сечения нагревательного экрана S1 и средней площади сечения фильерной пластины S2, а также за счет более качественной термической подготовки стекломассы при прохождении через отверстия в нагревательном экране, обеспечивается стабильный процесс формования тонких стекловолокон и снижение массы стеклоплавильного устройства.

Указанные соотношения определены экспериментальным путем. В таблице представлены параметры известных и предлагаемых 400-фильерных конструкций стеклоплавильных устройств.

Устойчивый процесс формования тонких непрерывных стеклянных волокон (диаметром 9 мкм и менее) возможен лишь при достижении определенной степени термической и химической однородности стекла, которая обеспечивается нагревательными и гомогенизирующими элементами конструкции устройства и увеличением времени термической подготовки стекломассы, т.е. времени от момента попадания частиц стекла в расплав и до момента формования в волокно.

Практически время пребывания расплава стекла в стеклоплавильном устройстве определяется дебитом фильер и высотой корпуса. Уменьшая диаметр и увеличивая длину фильер можно снизить их пропускную способность и тем самым увеличить время термической подготовки стекломассы в устройстве. Если плавильная способность нагревательных элементов стеклоплавильного устройства при этом остается неизменной, возможен критический рост уровня расплава стекла или перегрев стекломассы и ее вспенивание, что сопровождается переливом стекла через загрузочные элементы, разрушением огнеупорной обмуровки устройства и нарушением процесса формования непрерывного стекловолокна. Увеличение высоты корпуса стеклоплавильного устройства для предотвращения переливов, увеличивая время термической подготовки стекломассы, одновременно приводит к повышению материалоемкости устройства.

С другой стороны, для ускорения процессов гомогенизации расплава, тепловыделение на нагревательных экранах, определяемое их относительным сечением, должно быть таким, чтобы стекломасса нагревалась до максимально высоких технологических температур, и при этом фильерная пластина оставалась в узком (как правило, не более 10-15oC) температурном интервале, где вязкостные свойства стекломассы позволяют вытягивать ее в волокна.

Таким образом, конструкции стеклоплавильных устройств наряду с требованиями низкой материалоемкости, поскольку в условиях получения стекловолокна могут длительно эксплуатироваться только материалы на основе драгоценных металлов платиновой группы, должны обеспечивать определенное и стабильное распределение температуры стекломассы внутри корпуса, что достигается путем подбора сечений и размеров соответствующих элементов, а также их конфигурацией.

Выбор отношения высоты стеклоплавильного сосуда к длине в пределах от 1 до 1,2 при плотности фильер 3-4 шт/см2, определяется тем, что при H/L менее 1 не достигается термическая подготовка стекломассы, необходимая для ведения устойчивого процесса формования тонкого стекловолокна. Процесс выработки характеризуется повышенной обрывностью, что снижает производительность устройства и, соответственно, его экономичность.

Относительное увеличение высоты стеклоплавильного устройства - H/L больше 1,2 - нецелесообразно, т.к. при этом возрастает расход драгоценных металлов.

При отношении S1/S2 менее 2 плавильная способность экрана недостаточна для поддержания требуемого уровня расплава стекломассы в стеклоплавильном устройстве, что снижает его производительность.

При отношении S1/S2 больше 3,4 и допустимом съеме стекломассы, тепловыделение на экранах приводит к ее перегреву, возможному вспениванию в сосуде и нарушению процесса формования стекловолокна.

Сущность изобретения поясняется чертежом, где показан общий вид стеклоплавильного устройства.

Стеклоплавильное устройство содержит боковые стенки 1, торцевые стенки 2 с токоподводами 3 и фильерную пластину 4 с фильерами 5. Элементы 1, 2, 4 образуют корпус стеклоплавильного устройства. В верхней части корпуса расположена загрузочная щель 6, куда производится загрузка стеклошариков. Внутри корпуса расположены нагревательный(ные) 7 и гомогенизирующий 8 экраны.

При работе стеклоплавильного устройства, стеклошарики (на чертеже не показаны) через загрузочную щель 6 поступают на нагревательный экран 7, где плавятся за счет его нагрева электрическим током, подводимым к токоподводам 3 от источника электропитания. Расплав стекломассы через отверстия 9, плавильного экрана 7, поступает в зону, где происходит термическая гомогенизация и осветление стекломассы, сопровождаемые выделением газов, растворенных в стекломассе. Газы выходят в атмосферу через отверстия 10. Далее термически подготовленная и осветленная стекломасса проходит через гомогенизирующий экран (он может отсутствовать в конструкции), поступает к фильерной пластине 4 и через фильеры 5 вытягивается в виде элементарных волокон (на чертеже не показаны).

Технико-экономический эффект от использования изобретения выражается в снижении до 30% потребности в драгоценных металлах, необходимых для изготовления стеклоплавильного устройства.

Похожие патенты RU2171235C1

название год авторы номер документа
СТЕКЛОПЛАВИЛЬНЫЙ СОСУД 1999
  • Ястребов В.А.
  • Черняков Р.Г.
  • Сюхин А.М.
  • Рытвин Е.И.
  • Потапкина И.Н.
  • Перельман С.Л.
  • Мхитарян Т.А.
  • Морозова Л.Э.
  • Кравченко Н.В.
  • Верига Н.С.
  • Васекин В.В.
RU2147297C1
ЭЛЕКТРОКЕРАМИЧЕСКАЯ ПЕЧЬ С КОСВЕННЫМ НАГРЕВОМ ДЛЯ ФОРМОВАНИЯ НЕПРЕРЫВНЫХ И ШТАПЕЛЬНЫХ СТЕКЛЯННЫХ ВОЛОКОН 2014
  • Черняков Рафаил Григорьевич
  • Петунов Владимир Тимофеевич
  • Дубовый Владимир Климентьевич
RU2560761C1
СТЕКЛОПЛАВИЛЬНЫЙ СОСУД ДЛЯ ПОЛУЧЕНИЯ СТЕКЛОВОЛОКНА 2000
  • Громков Б.К.
  • Сорокин Ю.А.
  • Чебряков С.Г.
  • Жаров А.И.
  • Трофимов А.Н.
  • Колганова Т.В.
  • Шаронов А.П.
RU2167834C1
СПОСОБ ИЗГОТОВЛЕНИЯ ФИЛЬЕРНЫХ ПЛАСТИН И СЕКЦИЙ 2001
  • Ястребов В.А.
  • Морозова Л.Э.
  • Васекин В.В.
  • Рытвин Е.И.
RU2205085C1
Стеклоплавильный сосуд для формованияНЕпРЕРыВНОгО СТЕКляННОгО ВОлОКНА 1979
  • Волков Валентин Иванович
  • Холин Юрий Павлович
  • Дергоусов Евгений Федорович
  • Тимофеев Николай Иванович
  • Лукиных Борис Михайлович
  • Бородин Виктор Данилович
  • Зеленин Юрий Михайлович
SU842067A1
Стеклоплавильный сосуд для формования непрерывного стеклянного волокна 1980
  • Янукович Иван Иосифович
  • Хрущинский Николай Аркадьевич
  • Рослевич Галина Тимофеевна
  • Янукович Ольга Владимировна
SU967972A1
Стеклоплавильный сосуд 1989
  • Янукович Иван Иосифович
  • Хрущинский Николай Аркадьевич
  • Сивый Бронислав Петрович
SU1710528A1
Стеклоплавильный сосуд 1980
  • Кузнецов Владимир Ильич
  • Вишницкая Валентина Федоровна
  • Громков Борис Константинович
  • Клычков Константин Иванович
  • Черняков Рафаил Григорьевич
  • Куранов Альберт Александрович
  • Лукиных Борис Михайлович
SU885163A1
Стеклоплавильная печь для выработки стекловолокна 1981
  • Микельсон Артур Эдуардович
  • Османис Антон Донатович
  • Полякс Инар Янович
  • Грасис Андрис Арвидович
  • Кантане Велта Екабовна
SU948910A1
Стеклоплавильный сосуд 1978
  • Киселев Николай Васильевич
  • Царевский Виктор Павлович
  • Лукашкин Иван Иванович
  • Зайцев Сергей Васильевич
  • Шеханов Сергей Павлович
  • Соколов Рудольф Николаевич
  • Кукушкин Валерий Иванович
  • Васечкин Григорий Дмитриевич
  • Гущин Сергей Григорьевич
  • Пупырев Борис Алексеевич
  • Тимофеев Николай Иванович
SU722860A1

Иллюстрации к изобретению RU 2 171 235 C1

Реферат патента 2001 года СТЕКЛОПЛАВИЛЬНОЕ УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ СТЕКЛОВОЛОКНА

Изобретение относится к оборудованию для производства непрерывного стеклянного волокна двустадийным методом. Технической задачей изобретения является снижение материалоемкости конструкции для выработки тонкого (диаметром 9 мкм и менее) стекловолокна. Стеклоплавильное устройство для получения стекловолокна включает корпус, фильерную пластину со средней плотностью фильер 3-4 шт/cм2, токоподводы и нагревательный(ые) экран(ы) с отверстиями для прохождения стекломассы и выхода газов. Отношение средней площади поперечного сечения экрана(ов) к средней площади поперечного сечения фильерной пластины составляет от 2 до 3,4, а отношение высоты корпуса к его длине - от 1,0 до 1,2. При этом площадь единичного отверстия для прохождения стекломассы в экране(нах) не превышает площади выходного отверстия фильеры. 1 з.п. ф-лы, 1 табл., 1 ил.

Формула изобретения RU 2 171 235 C1

1. Стеклоплавильное устройство для получения стекловолокна, включающее корпус, фильерную пластину со средней плотностью фильер 3-4 шт/см2, токоподводы и, по крайней мере, один нагревательный экран с отверстиями для прохождения стекломассы и выхода газов, отличающееся тем, что отношение средней площади поперечного сечения экрана к средней площади поперечного сечения фильерной пластины составляет от 2 до 3,4, а отношение высоты корпуса к его длине - от 1,0 до 1,2. 2. Стеклоплавильное устройство по п.1, отличающееся тем, что площадь единичного отверстия для прохождения стекломассы в экране не превышает площади выходного отверстия фильеры.

Документы, цитированные в отчете о поиске Патент 2001 года RU2171235C1

СТЕКЛОПЛАВИЛЬНЫЙ СОСУД 1999
  • Ястребов В.А.
  • Черняков Р.Г.
  • Сюхин А.М.
  • Рытвин Е.И.
  • Потапкина И.Н.
  • Перельман С.Л.
  • Мхитарян Т.А.
  • Морозова Л.Э.
  • Кравченко Н.В.
  • Верига Н.С.
  • Васекин В.В.
RU2147297C1
RU 2000277 Cl, 10.05.1993
US 5147431 A, 15.09.1992
DE 19638056 Al, 09.04.1998
WO 00/29343 A2, 25.05.2000.

RU 2 171 235 C1

Авторы

Ястребов В.А.

Черняков Р.Г.

Сюхин А.М.

Рытвин Е.И.

Потапкина И.Н.

Перельман С.Л.

Мхитарян Т.А.

Морозова Л.Э.

Кравченко Н.В.

Верига Н.С.

Васекин В.В.

Даты

2001-07-27Публикация

2000-08-14Подача