Изобретение относится к черной металлургии, а именно к способам производства микролегированных ванадием сталей. В настоящее время увеличивается потребность в прокате большой толщины (лист толщиной 15 мм и выше) из сталей повышенной прочности и хладостойкости. Эти стали отличаются от рядовых марок низким содержанием остаточных примесей (сера, фосфор, мышьяк, сурьма, олово, свинец, цинк, висмут, а также хром, никель, медь) за исключением случаев легирования стали этими элементами. Для микролегирования, модифицирования сталей применяют карбонитридообразующие элементы (V, Тi), а также кальций. Такие стали выплавляют из первородного сырья (чугун, металлизированные окатыши, губчатое железо) без применения металлолома, жидкую сталь вакуумируют, производят контролируемую прокатку заготовок.
Известен способ раскисления, модифицирования и микролегирования ванадием стали, включающий доводку металла по химическому составу на установке "печь-ковш" путем присадки в перегретый расплав ванадиевого шлака, ферросилиция и порошкового силикокальция в соотношении 1:(0,15-0,40):(0,10-0,15) соответственно, причем расход ванадиевого шлака составляет 3,7-7,5 кг/т стали, а корректировку содержания ванадия производят присадкой дополнительного количества ванадиевого шлака [1].
Известен способ раскисления и легирования ванадийсодержащей стали, включающий ввод в ковш в процессе выпуска металла ванадиевого шлака в количестве 1-1,5% от объема металла в ковше и раскислителей, окончательную доводку на установке "печь-ковш" за счет нагрева расплава, продувки его аргоном, ввода шлакообразующей смеси из извести и плавикового шпата в количестве до 10 кг/т стали и ферросплавов в количестве, необходимом для восстановления ванадия из шлака и корректировки хим. состава. [2]. Недостатком обоих способов является то, что содержание ванадия в этих сталях не более 0,05% и относительно высокое содержание серы и фосфора.
Известен способ выплавки стали в конвертере, ее внепечной обработки на установке "печь-ковш" и вакуумирование в циркуляционном вакууматоре, включающий заливку в конвертер углеродистого полупродукта, ввод шлакообразующих материалов, продувку расплава кислородом через фурму, выпуск металла в ковш с отсечкой шлака, ввод в ковш во время выпуска раскислителей и ванадиевого шлака, продувку расплава аргоном, доводку стали по химическому составу и температуре на установке "печь-ковш" путем ввода шлакообразующих материалов, ферросплавов и алюминия, нагрева расплава электрическими дугами и продувкой аргоном в течение всего времени обработки, вакуумирование стали в циркуляционном вакууматоре [3, 4].
Недостатком этого способа является невозможность глубокой деформации и десульфурации стали. Для получения концентраций ванадия в стали 0,08-0,16% в ковш при выпуске металла и в начале доводки на "печи-ковше" вводится 12-18 кг/т стали ванадиевого шлака, содержащего 16-24% V2O5, 15-18% SiO2, 25-35% Fеобщ. Для образования жидкоподвижного шлака с основностью более 3, необходимого для эффективной десульфурации, потребуется ввести большое количество извести и плавикового шпата, в результате чего объем шлака составит 8-10% от объема металла, а при ограниченном размере ковша невозможно проводить нормальную продувку расплава аргоном из-за выбросов шлака из ковша.
Наиболее близким по технической сущности и достигаемому результату к заявленному изобретению является способ выплавки низкоуглеродистой ванадийсодержащей стали повышенной прочности и хладостойкости, включающий заливку в конвертер углеродистого полупродукта, продувку его кислородом, выпуск металла в ковш с отсечкой шлака, присадку в ковш извести, ванадиевого шлака, раскислителей и ферросплавов, продувку расплава металла аргоном и доводку стали по химическому составу и температуре ("Производство ванадиевого шлака и стали в конвертерах". Технологическая инструкция ТИ 102-СТ.КК-66-95, АОА "Нижнетагильский металлургический комбинат". - г. Н. Тагил, 1995, с. 27-68).
Недостатком этого способа является невозможность глубокой дефосфорации и десульфурации стали.
Поставлена задача: создать способ выплавки низкоуглеродистой ванадийсодержащей стали повышенной прочности и хладостойкости, содержащей 0,08-0,16% ванадия, не более 0,01% фосфора и не более 0,005% серы.
Поставленная задача достигается тем, что, по изобретению, продувку углеродистого полупродукта кислородом проводят в конвертере в две стадии с промежуточным скачиванием шлака и наводкой нового шлака с основностью не менее 3-х, при этом в ковш вводят ванадиевый шлак в количестве 4-6 кг/т стали совместно с известью при их соотношении 1:1, после чего передают ковш с металлом на установку печь-ковш, вводят шлакообразующие материалы и разжижающий материал, присаживают в качестве раскислителя алюминий, затем вводят ванадиевый шлак в количестве 8-12 кг/т стали совместно с известью при их соотношении 1:0,8 соответственно и ферросплавы в количестве, необходимом для восстановления ванадия и корректировки химического состава стали, после чего проводят вакуумирование стали в циркуляционном вакууматоре, при этом расплав во время вакуумирования обрабатывают алюминиевой и порошковой силикокальциевой проволокой. В качестве разжижающего материала на установке "печь-ковш" вводят известково-глиноземистый шлак в количестве 4-7 кг/т стали для наведения жидкоподвижного шлака с основностью более 2-х.
Сопоставительный анализ заявляемого технического решения и способа-прототипа показывает, что предлагаемый способ отличается тем, что он гарантирует получение стали с содержанием ванадия 0,08-0,16%, минимальное содержание примесей, в том числе фосфора - не более 0,01%, серы - не более 0,005%, при условии применения для микролегирования стали ванадиевого шлака.
Таким образом, данное техническое решение соответствует критерию "новизна". Анализ патентов и научно-технической информации не выявил использования новых существенных признаков, используемых в предлагаемом решении, по их функциональному назначению. Следовательно, предлагаемое изобретение соответствует критерию "изобретательский уровень".
Предлагаемые параметры установлены экспериментальным путем. Найденное техническое решение применимо для выплавки низкоуглеродистых сталей с содержанием ванадия 0,08-0,16% и низким содержанием фосфора и серы.
Дополнительное легирование ванадием способствовало повышению хладостойкости стали только в том случае, когда проявлялся его микролегирующий эффект, т. е. при содержании до 0,16%. При повышенном содержании ванадия первичные карбиды располагаются в междендритных участках, ухудшая хладостойкость стали.
Расход алюминия для раскисления стали ванадием ограничивается и определяется исходя из необходимости достижения необходимой степени раскисления металла.
Пример
Опытные плавки проводили на стали марки 09Г2Ф в 160-тонных конвертерах на Нижнетагильском металлургическом комбинате. В конвертер залили углеродистый полупродукт, загрузили шлакообразующие материалы, затем проводили продувку кислородом. После истечения 30-40% времени продувки произвели повалку конвертера и спустили шлак, после чего опять загрузили шлакообразующие материалы для наводки шлака с основностью более 3-х и заканчивали продувку кислородом.
Во время выпуска металла в ковш одновременно производили присадку ванадиевого шлака в количестве 4-6 кг/т стали и такое же количество извести, а также силикомарганец. После продувки металла аргоном ковш с металлом передавался на установку "печь-ковш", где после подогрева расплава электрическими дугами и перемешивания аргоном, вводили шлакообразующие материалы и разжижающий материал - вводили известково-глиноземистый шлак в количестве 4-7 кг/т стали и 2-3,5 кг/т извести при их соотношении 1:0,5 для наведения жидкоподвижного шлака с основностью более 2-х. Следом присаживали алюминий, расход которого для раскисления стали ограничивался и определялся исходя из необходимости достижения необходимой степени раскисления металла.
Затем после истечения 40-70% времени доводки вводили ванадиевый шлак в количестве 8-12 кг/т стали и известь в количестве 6,5-9,5 кг/т стали при их соотношении 1: 0,8, а также ферротитан и ферросилиций в количестве, необходимом для восстановления ванадия и корректировки химического состава стали, после чего проводили вакуумирование стали в циркуляционном вакууматоре. Во время вакуумирования расплав обрабатывали алюминиевой и порошковой силикокальциевой проволокой. Затем готовую сталь разлили на слябовой МНЛЗ, а заготовки передали в цех прокатки широкополочных балок, где проводили контролируемую прокатку листа толщиной 32 мм.
Плавки по способу-прототипу проводили следующим образом. В конвертер залили углеродистый полупродукт, загрузили шлакообразующие материалы, после продувки кислородом металл выпустили в ковш вместе с частью шлака, поскольку его не полностью удалось отсечь. В ковш ввели ванадиевый шлак в количестве 12,0 кг/т стали, а также силикомарганец и ферромарганец. На "печи-ковше", после нагрева и перемешивания расплава, ввели порционно известь в количестве 17,0 кг/т стали, плавиковый шпат в количестве 4,5 кг/т, а затем - силикокальций, ферросилиций, ферротитан и алюминий. Жидкую сталь провакуумировали на циркуляционном вакууматоре и разлили на МНЛЗ. В ЦПШБ провели контролируемую прокатку заготовок на лист толщиной 32 мм.
В таблицах 1-4 представлены технологические параметры опытных и сравнительных плавок, химический состав металла и шлаков, механические свойства листов. Данные таблицы показывают, что выплавка стали по предлагаемому способу обеспечивает получение концентрации ванадия 0,08-0,16%, фосфора - не более 0,01%, серы - не более 0,005%, а механические свойства толстого листа соответствуют требованиям стандарта для стали Х70.
При проведении хорошей отсечки шлака, во время выпуска металла в ковш можно будет добиться еще более низкого содержания фосфора в стали.
Высокий комплекс физико-механических и служебных свойств этих сталей достигается за счет микролегирования металла ванадием, использования обессеренного чугуна, глубокого рафинирования металла шлакообразующими смесями во время выпуска плавки и во время доводки на "печи-ковше", обработки алюминиевой и порошковой проволокой во время вакуумирования на циркуляционном вакууматоре.
Стали с ванадием обладают хорошей свариваемостью, поэтому их можно успешно использовать для ответственных сварных конструкций в строительстве и машиностроении, в том числе и в северном исполнении.
Введение ванадия в горячекатанную низкоуглеродистую сталь способствует повышению (в сравнении со способом-прототипом) предела текучести на 6,5-10,4%, временного сопротивления разрыву на 11,2-15,0%, а также снижению относительного удлинения на 1-2%.
Таким образом, предлагаемое решение позволяет получать качественную ванадийсодержащую сталь повышенной прочности и хладостойкости.
Источники информации
1. Способ раскисления, модифицирования и микролегирования ванадием стали. Патент 2120477, С 21 С 7/06, 30.09.1997 г. Бюллетень 29, 20.10.1998 г.
2. Способ раскисления и легирования ванадийсодержащей стали. Патент РФ 2064589, С 21 С 7/06, 04.12.1995. Бюллетень 21, 27.07.1996 г.
3. Технологическая инструкция ТИ-102-ст.кк-66-95 "Производство ванадиевого шлака и стали в конвертерах". ОАО "Нижнетагильский металлургический комбинат", 1995 г.
4. Технологическая конструкция ТИ-102-ст.кк-318-97 "Внепечная обработка стали на установке "печь-ковш" и вакуумирование в циркуляционном вакууматоре". ОАО "Нижнетагильский металлургический комбинат", 1997 г.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПЕРЕДЕЛА ВАНАДИЕВОГО ЧУГУНА В КОНВЕРТЕРЕ | 1998 |
|
RU2136764C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОДШИПНИКОВОЙ СТАЛИ | 2001 |
|
RU2200198C2 |
СПОСОБ РАСКИСЛЕНИЯ, МОДИФИЦИРОВАНИЯ И МИКРОЛЕГИРОВАНИЯ ВАНАДИЕМ СТАЛИ | 1997 |
|
RU2120477C1 |
СПОСОБ ПРОИЗВОДСТВА СТАЛИ | 2003 |
|
RU2233339C1 |
СПОСОБ РАСКИСЛЕНИЯ, МОДИФИЦИРОВАНИЯ И МИКРОЛЕГИРОВАНИЯ СТАЛИ ВАНАДИЙСОДЕРЖАЩИМИ МАТЕРИАЛАМИ | 1998 |
|
RU2140995C1 |
СПОСОБ РАСКИСЛЕНИЯ И ЛЕГИРОВАНИЯ ВАНАДИЙСОДЕРЖАЩЕЙ СТАЛИ | 1995 |
|
RU2064509C1 |
СПОСОБ И ШИХТА ДЛЯ ПРОИЗВОДСТВА УГЛЕРОДИСТОЙ КОНСТРУКЦИОННОЙ СТАЛИ С ПОНИЖЕННОЙ ПРОКАЛИВАЕМОСТЬЮ В ДУГОВОЙ СТАЛЕПЛАВИЛЬНОЙ ПЕЧИ | 2012 |
|
RU2534715C2 |
СПОСОБ ПРОИЗВОДСТВА ВАНАДИЕВОГО ШЛАКА И ЛЕГИРОВАННОЙ ВАНАДИЕМ СТАЛИ | 2008 |
|
RU2416650C2 |
СПОСОБ ВЫПЛАВКИ И ВАКУУМИРОВАНИЯ РЕЛЬСОВОЙ СТАЛИ | 2008 |
|
RU2394918C2 |
Способ производства низкокремнистой стали | 2023 |
|
RU2818526C1 |
Изобретение относится к черной металлургии, а именно к способам производства микролегированных ванадием сталей. Технический результат - получение качественной низкоуглеродистой ванадийсодержащей стали повышенной прочности и хладостойкости, содержащей 0,08-0,16% ванадия, не более 0,01% фосфора и не более 0,005% серы. Способ включает продувку углеродистого полупродукта кислородом, которую проводят в конвертере в две стадии с промежуточным скачиванием шлака и наводкой нового шлака с основностью не менее 3-х. В ковш вводят ванадиевый шлак в количестве 4-6 кг/т стали совместно с известью при их соотношении 1:1. После передачи ковша с металлом на установку печь-ковш в него вводят шлакообразующие материалы и разжижающий материал, производят раскисление расплава алюминием. Затем вводят ванадиевый шлак в количестве 8-12 кг/т стали совместно с известью при их соотношении 1:0,8 и ферросплавы в количестве, необходимом для восстановления ванадия и корректировки химического состава стали. После чего вакуумируют сталь в циркуляционном вакууматоре с обработкой расплава алюминиевой и порошковой силикокальциевой проволокой. В качестве разжижающего материала на установке печь-ковш вводят известково-глиноземистый шлак в количестве 4-7 кг/т стали для наведения жидкоподвижного шлака с основностью более 2-х. Стали с ванадием обладают хорошей свариваемостью, поэтому их можно успешно использовать для ответственных сварных конструкций в строительстве и машиностроении, в т.ч. в северных районах. 1 з.п. ф-лы, 4 табл.
Производство ванадиевого шлака и стали в конвертерах | |||
Транспортер для перевозки товарных вагонов по трамвайным путям | 1919 |
|
SU102A1 |
ОАО "Нижнетагильский металлургический комбинат" | |||
- Н | |||
Тагил, 1995, с | |||
Прибор с двумя призмами | 1917 |
|
SU27A1 |
СПОСОБ ПЕРЕДЕЛА ВАНАДИЕВОГО ЧУГУНА В КОНВЕРТЕРЕ | 1998 |
|
RU2136764C1 |
Способ передела ванадиевого чугуна в конвертере | 1983 |
|
SU1127906A1 |
СПОСОБ РАСКИСЛЕНИЯ, МОДИФИЦИРОВАНИЯ И МИКРОЛЕГИРОВАНИЯ ВАНАДИЕМ СТАЛИ | 1997 |
|
RU2120477C1 |
СПОСОБ РАСКИСЛЕНИЯ И ЛЕГИРОВАНИЯ ВАНАДИЙСОДЕРЖАЩЕЙ СТАЛИ | 1995 |
|
RU2064509C1 |
ТЕРМОТОПЛИВНЫЙ РЕГУЛЯТОР | 1991 |
|
RU2027058C1 |
Торфодобывающая машина с вращающимся измельчающим орудием | 1922 |
|
SU87A1 |
Авторы
Даты
2002-07-27—Публикация
2000-08-02—Подача