Изобретение относится к способам термокаталитической переработки нефтяного сырья и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. В частности, оно может быть использовано в нефтепереработке в качестве способа переработки нефтяного сырья с целью получения олефинов и высокооктанового бензина.
Известен способ переработки вакуумного дистиллята путем каталитического крекинга на полупромышленной установке, на которой подбором соответствующего режима работы было достигнуто увеличение выхода олефинов до 13,37 мас.% при практически неизменном выходе бензина.
Существенным недостатком данного способа является низкий выход жирного газа крекинга, небольшое содержание в нем низших олефинов и, в частности, практически отсутствие в газах крекинга этилена. (Суханов В.П. Каталитические процессы в нефтепереработке. - М.: Химия, 1973. с. 132).
Известен также способ получения олефинов крекингом прямогонной фракции 73-193oС (ρ
Данный способ имеет преимущество перед первым: он позволяет проводить процесс высокотемпературного крекинга с большим выходом целевой продукции. Однако данному способу присущ следующий недостаток - низкий выход этилена (4,2 мас.%). (Суханов В.П. Каталитические процессы в нефтепереработке. - М.: Химия, 1973. с. 133).
Ближайшим к изобретению по технической сущности (прототипом) является способ переработки вакуумного газойля путем каталитического крекинга, описанный в патенте RU 4773457 С1, 26.12.89. "Способ переработки вакуумного газойля".
Каталитический крекинг сырья по прототипу осуществляется в трубе лифт-реактора в присутствии низкооктановой бензиновой фракции термического происхождения с получением в качестве целевых продуктов бензина, бутан-бутиленовой и пропан-пропиленовой фракций. С целью увеличения выхода бензина и бутан-бутиленовой фракции используют низкооктановую бензиновую фракцию термического происхождения, содержащую не менее 30 мас.% олефиновых углеводородов, которую подают в лифт-реактор в жидкой фазе в точку выше точки ввода вакуумного газойля, и процесс проводят при выдержке бензиновой фракции в лифт-реакторе 0,3-0,5 с. Однако в данном случае также наблюдаются недостаточно высокие выходы этилена, пропилена и бутиленов.
Предлагаемое изобретение решает задачу одновременного увеличения выхода основных низкомолекулярных олефиновых углеводородов: этилена, пропилена и бутиленов.
Указанная задача решается тем, что способ переработки нефтяного сырья, включающий каталитический крекинг вакуумного газойля в качестве тяжелого сырья в присутствии низкооктановой бензиновой фракции в качестве транспортирующего агента и одновременно сырья в лифт-реакторе, согласно изобретению проводят при температуре 700-705oС и времени контакта 3,5 с, причем в зону смешения с катализатором подают прямогонную бензиновую фракцию в паровой фазе при температуре 460oС, а вакуумный газойль подают в зону смешения в парожидкостном состоянии при температуре 360oС в массовом соотношении вакуумного газойля и прямогонной бензиновой фракции 1:2,33 и объемной скорости подачи сырья не выше 0,3 ч-1. Кроме того, для снижения выбросов NOx и уменьшения образования дымовых газов последние непрерывно циркулируют в системе с отводом балансового количества, причем в циркулирующие дымовые газы, состоящие преимущественно из двуокиси углерода в смеси с кислородом, используют также для регенерации катализатора.
Кратность циркуляции катализатора равна 11. Продукты переработки вакуумного газойля и бензиновых фракций далее фракционируют. При этом получают газы, в составе которых превалируют олефины С2-С4, высокооктановый благороженный бензин, тяжелые фракции >195oС и выше. В качестве катализатора используется микросферический цеолитсодержащий катализатор каталитического крекинга "Спектр-943П" фирмы "Grace-Davison" (США).
Схема реакторно-регенераторного блока включает лифт-реактор, состоящий из зоны смешения, стояка для выгрузки закоксованного катализатора, отпарной секции, циклонов, верхней части, регенератор, выносной циклон, теплообменник, котел-утилизатор, компрессор, печь для нагрева вакуумного газойля, печь для нагрева прямогонной бензиновой фракции, закалочно-испарительный аппарат, барабан с водой.
Прямогонный бензин подается во время пусковых работ в печь во время остальной работы в аппаратуру утилизации избытка тепла регенератора в теплообменник, установленный на линии выхода дымовых газов из регенератора, и змеевик отвода излишка тепла, монтируемый в регенераторе. Прямогонный бензин нагревается до 460oС и в паровой фазе поступает в зону смешения лифт-реактора, куда подается также водяной пар для снижения коксообразования и диспергирования реакционного потока. В зону смешения подается также вакуумный газойль, предварительно нагреваемый в печи до 360oС. В лифт-реактор на смешение с сырьем из регенератора поступает регенерированный катализатор с кратностью циркуляции, равной 11. Пройдя "узел ввода" пары сырья подвергаются термокаталитическим превращениям путем контактирования с регенерированным катализатором. Верхняя часть лифт-реактора специальной конструкции представляет собой реактор-сепаратор. Газокатализаторный поток из лифт-реакторов вводится через циклоны в реактор-сепаратор - верхнюю часть лифт-реактора над уровнем псевдоожиженного слоя катализатора. Отработанный катализатор из спускных стояков циклонов реактора-сепаратора поступает в отпарную зону, где с помощью водяного пара адсорбированные тяжелые углеводороды отпариваются из катализатора. После десорбции закоксованный катализатор подается по наклонному стояку в регенератор, в котором производится выжиг кокса и дожит образующегося оксида углерода в диоксид.
Регенерация катализатора проводится в псевдоожиженном слое смесью СО2 и O2. Таким образом, дымовые газы, состоящие преимущественно из СО2, непрерывно циркулируют в системе с отводом балансового количества. В циркулирующие дымовые газы компрессором непрерывно добавляется определенное количество кислорода, необходимого для выжига кокса в регенераторе. Внутренние циклоны регенератора в сочетании с выносным циклоном обеспечивают эффективную очистку дымовых газов регенерации от катализаторной пыли и уносимого катализатора. Выходящие после регенератора газы охлаждаются, нагревая исходное сырье в теплообменнике или утилизируя тепло в котле-утилизаторе с получением пара высокого давления. Регенерация катализатора проводится при температуре 800oС, что позволяет поддерживать высокую температуру в реакторе пиролиза.
Газообразные продукты, отделившиеся в сепараторе от катализатора, проходят внутренние циклоны, отделяясь от катализаторной пыли, покидают реактор. Пирогаз с выхода реактора направляется в закалочно-испарительный аппарат, где охлаждается за счет испарения питательной воды в межтрубном пространстве. Закалочно-испарительный аппарат работает полностью залитый водой, поступающей из барабана. За счет резкого охлаждения пирогаза прекращается протекание всех вторичных и побочных реакций. Образующийся в межтрубном пространстве закалочно-испарительного аппарата водяной пар отделяется от воды в барабане высокого давления и направляется в коллектор пара высокого давления.
После закалочно-испарительного аппарата пирогаз с температурой 350-450oС отправляется на фракционирование и дальнейшее разделение. После выхода установки на режим прямогонный бензин нагревается за счет тепла, утилизируемого в регенераторе, и печь используется для пиролиза этана и пропана, образующихся в процессе и используемых в качестве рециркулята.
Пример. Высокотемпературному крекингу подвергают прямогонный бензин и вакуумный газойль Арланской нефти. Физико-химические характеристики данных фракций представлены соответственно в табл. 1 и 2.
Процесс проводится в условиях, приведенных в табл. 3.
Материальный баланс процесса приведен в табл. 4.
Характеристика фракции C5 - 195oC представлена в табл. 5.
Как видно из данных этой таблицы, применение способа согласно изобретению позволяет значительно повысить выходы низкомолекулярных олефинов C2-C4 в процессе высокотемпературного крекинга.
Предлагаемое изобретение соответствует критерию "промышленная применимость" и может быть использовано на нефтеперерабатывающих заводах и заводах нефтехимических производств для получения низкомолекулярных олефинов и высокооктанового бензина.
название | год | авторы | номер документа |
---|---|---|---|
Способ переработки вакуумного газойля | 1989 |
|
SU1696458A1 |
СПОСОБ КАТАЛИТИЧЕСКОГО ОБЛАГОРАЖИВАНИЯ БЕНЗИНОВ ТЕРМИЧЕСКИХ ПРОЦЕССОВ | 2015 |
|
RU2599721C1 |
Установка каталитического крекинга | 2023 |
|
RU2811276C1 |
СПОСОБ ПЕРЕРАБОТКИ ВАКУУМНОГО ГАЗОЙЛЯ | 1998 |
|
RU2140958C1 |
СПОСОБ И УСТАНОВКА ФЛЮИД-КАТАЛИТИЧЕСКОГО КРЕКИНГА ДЛЯ МАКСИМАЛЬНОГО УВЕЛИЧЕНИЯ ВЫХОДА ЛЕГКИХ ОЛЕФИНОВ И ДРУГИХ ПРИМЕНЕНИЙ | 2020 |
|
RU2811472C2 |
СПОСОБ ПЕРЕРАБОТКИ БЕНЗИНОВ ТЕРМИЧЕСКИХ ПРОЦЕССОВ И КАТАЛИЗАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2469070C1 |
СПОСОБ ПЕРЕРАБОТКИ ТЯЖЕЛОГО НЕФТЯНОГО СЫРЬЯ | 1990 |
|
SU1785261A1 |
Способ каталитического крекинга | 2023 |
|
RU2811274C1 |
АППАРАТУРА И СПОСОБ КАТАЛИТИЧЕСКОГО КРЕКИНГА | 2010 |
|
RU2535675C2 |
Способ комбинированной переработки нефтяных дистиллатов | 1959 |
|
SU124052A2 |
Изобретение относится к способам термокаталитической переработки нефтяного сырья и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности, в частности, оно может быть использовано в нефтеперерабатывающей промышленности для переработки нефтяного сырья с целью получения олефинов и высокооктанового бензина. Способ переработки нефтяного сырья включает высокотемпературный каталитический крекинг вакуумного газойля в присутствии низкооктановой прямогонной бензиновой фракции при температуре 700-705oС и времени контакта 3,5 с. Прямогонную бензиновую фракцию подают в зону контакта в паровой фазе при температуре 460oС, а вакуумный газойль подают в зону контакта в парожидкостном состоянии при температуре 360oС в соотношении вакуумного газойля и прямогонной бензиновой фракции 1:2,33 и объемной скорости подачи сырья не выше 0,3 ч-1. Для снижения выбросов NOх и уменьшения образования дымовых газов последние непрерывно циркулируют в системе с отводом балансового количества, причем в циркулирующие дымовые газы непрерывно добавляют кислород в количестве, необходимом для выжигания кокса. Дымовые газы, состоящие преимущественно из двуокиси углерода в смеси с кислородом, используют также для регенерации катализатора. Задача, на решение которой направлено изобретение, заключается в одновременном увеличении выхода основных низкомолекулярных олефиновых углеводородов: этилена, пропилена и бутиленов. 2 з.п. ф-лы, 5 табл.
Способ переработки вакуумного газойля | 1989 |
|
SU1696458A1 |
US 4376038 А, 08.03.1983 | |||
СПОСОБ ПЕРЕРАБОТКИ МОТОАЛКИЛАТА В СМЕСИ С ВАКУУМНЫМ ГАЗОЙЛЕМ | 1998 |
|
RU2144557C1 |
Авторы
Даты
2003-04-20—Публикация
2001-09-18—Подача