Изобретение относится к гидромашиностроению и может быть использовано в конструкциях центробежных насосах.
Известны рабочие органы центробежных насосов, в частности рабочие колеса и направляющие аппараты с пространственно изогнутыми лопастями и граничными поверхностями, что обеспечивает снижение гидродинамических потерь (Ломакин А.А. Центробежные и осевые насосы. - М.: Машиностроение, 1966, 98-100). Однако экономичность насосов с такими рабочими органами недостаточна из-за повышенных потерь на гидродинамическое трение и отрыв пограничного слоя на поверхностях проточной части. Потери в пограничных слоях существенно возрастают при резком или немонотонном изменении кривизны обтекаемых поверхностей (Шлихтинг Г. Теория пограничного слоя. - М.: Наука, 1974, 565-567. Ellis L. B. Joubert P.N. Turbulent shear now in a curved duct. Journal Fluid Mechanic, 1974, v.62, 65-84) Вместе с тем, в рассмотренных рабочих органах изменение кривизны поверхностей не контролируется.
Известны также колеса с рабочими лопастями, образующие поверхностей (профили) которых представляют собой единую логарифмическую спираль (Руднев С. С. Основы теории лопастных решеток. - М.: МВТУ им. Баумана, 1961, 62-65). Логарифмическая спираль обладает рядом удивительно уникальных свойств (Савелов А.А. Плоские кривые. - М.: Физматгиз, 1969, 209-211). В частности, радиус кривизны в любой точке спирали монотонно изменяется пропорционально длине дуги кривой, отсчитываемой от полюса. Центробежные насосы с такими рабочими колесами показали высокую экономичность.
Данная форма обтекаемых поверхностей с такими образующими является наиболее близкой к решаемой задаче и достигаемому техническому результату. Однако во всех точках единой логарифмической спирали угол между касательной и окружным направлением постоянен и не может быть (применительно к лопастям) достаточно большим вследствие необходимости соблюдения безударного натекания потока на входе лопасти. Вследствие этого малого угла на выходе лопасти получаются длинными, с большой площадью обтекаемых поверхностей, а колесо является низконапорным или большого диаметра. Указанное несовершенство приводит к низкой напорности всего насоса, увеличенным габаритам и массе. Поэтому в современных насосах такие лопасти практически не применяются.
Задачей, на решение которой направлено предлагаемая конструкция, является повышение экономичности при увеличении напорности и уменьшении габаритов насоса.
Этот технический результат достигается тем, что образующие ограничивающих поверхностей и лопастей полностью или частично выполняются в форме сопряженных отрезков логарифмических спиралей. При этом минимизируются потери в пограничных слоях и вихревых зонах вследствие монотонности изменения кривизны логарифмических спиралей и вместе с тем, угол выхода лопастей может быть достаточно большим, так как исключаются жесткое ограничение на углы между касательными к лопастям и окружным направлением. Кроме того, ввиду уменьшения вихревых зон, возникающих при отрыве потока, снижается количество повторных взаимодействий твердых частиц в жидкости с поверхностями проточной части, уменьшается износ их и увеличивается ресурс насосного агрегата.
Данное решение иллюстрируется двумя чертежами. На фиг.1 показан меридиональный разрез насоса, на фиг.2 - поперечный разрез по лопастям рабочих органов колеса и направляющего аппарата.
Насос включает центробежное колесо, состоящее из ведущего 1 и покрывного 2 дисков и рабочих лопастей 3 между ними, и статорные части, включающие направляющие лопасти 4. Образующие граничных поверхностей проточной части рабочих органов состоят из сопряженных отрезков логарифмических спиралей. Так, образующие поверхностей рабочих лопастей состоят из отрезков спиралей 5 и 6 с точкой сопряжения 7, а образующая осесимметричной поверхности покрывного диска состоит из сопряженных отрезков логарифмических спиралей 8 и 9 с точкой сопряжения 10. Проточная часть поверхностей корпусных деталей насоса направляющих лопастей также ограничена поверхностями с образующими в форме сопряженных отрезков логарифмических спиралей 11 и 12 с точкой сопряжения 13.
При вращении колеса центробежного насоса жидкость обтекает рабочие лопасти 3. Монотонное изменение кривизны поверхностей рабочих лопастей с образующими в форме сопряженных отрезков логарифмических спиралей обеспечивают обтекание с минимально возможными отрывными зонами и минимумом потерь. Минимальные потери в проточной части рабочего колеса также обеспечиваются осесимметричными граничными поверхностями с образующими из сопряженных отрезков логарифмических спиралей. В неподвижных каналах проточной части, ограниченных поверхностями с образующими из сопряженных отрезков логарифмических спиралей направляющих лопастей 4 и боковыми стенками, поток разворачивается и тормозится с минимальными потерями по тем же причинам, что и в рабочем колесе.
Для построения поверхностей с образующими из сопряженных отрезков логарифмических спиралей разработана специальная компьютерная программа. Программа успешно использовалась при конструировании тел с минимальным гидравлическим сопротивлением.
Благодаря уменьшению потерь и вместе с тем возможности выполнения лопастей на входе с необходимыми для безударного входа потока малыми углами, а на выходе лопастей с большими углами, обеспечивающими повышение напора насоса, достигается повышение экономичности насосного агрегата при снижении габаритов и массы его. Одновременно снижается потребление энергии. Кроме того, ввиду уменьшения вихревых зон, возникающих при отрыве потока, снижается количество повторных взаимодействий твердых частиц в жидкости с поверхностями проточной части, а следовательно, уменьшается износ их и увеличивается ресурс насосного агрегата, в особенности при перекачивании загрязненных жидкостей и пульп.
Наиболее эффективно использование предложенного решения в погружных и скважинных насосах, где габариты в сочетании с требованиями минимальной затрачиваемой насосом мощности имеют решающее значение для потребителя.
название | год | авторы | номер документа |
---|---|---|---|
РАБОЧЕЕ КОЛЕСО ЦЕНТРОБЕЖНОГО НАСОСА | 1998 |
|
RU2154197C2 |
ЦЕНТРОБЕЖНЫЙ ПОГРУЖНОЙ НАСОСНЫЙ АГРЕГАТ | 1992 |
|
RU2030641C1 |
ЦЕНТРОБЕЖНЫЙ НАСОС ДЛЯ ВЫСОКОВЯЗКИХ ЖИДКОСТЕЙ | 2014 |
|
RU2576950C2 |
ЦЕНТРОБЕЖНЫЙ НАСОС | 1992 |
|
RU2050475C1 |
УСТРОЙСТВО ДЛЯ ПЕРЕКАЧИВАНИЯ КРОВИ | 2009 |
|
RU2430748C2 |
Центробежный насос | 1980 |
|
SU1008491A1 |
УСТРОЙСТВО ДЛЯ ПЕРЕКАЧИВАНИЯ КРОВИ | 2005 |
|
RU2308977C2 |
СКВАЖИННЫЙ ПОГРУЖНОЙ НАСОС ДЛЯ ПЕРЕКАЧКИ ВЯЗКОЙ ЖИДКОСТИ | 2012 |
|
RU2516753C1 |
Центробежный насос для механической поддержки кровообращения | 2018 |
|
RU2683069C1 |
Радиально-осевая гидротурбина и способ её изготовления | 2020 |
|
RU2757242C1 |
Изобретение относится к насосостроению. Рабочий орган центробежного насоса включает лопасти и ограничивающие поверхности, образующие проточную часть. Образующие ограничивающих поверхностей лопастей выполнены в форме сопряженных отрезков логарифмических спиралей. Изобретение направлено на повышение экономичности при увеличении напорности и уменьшении габаритов насоса. 2 ил.
Рабочий орган центробежного насоса, включающий лопасти и ограничивающие поверхности, образующие проточную часть, отличающийся тем, что образующие ограничивающих поверхностей лопастей выполнены в форме сопряженных отрезков логарифмических спиралей.
РУДНЕВ С.С | |||
Основы теории лопастных решеток | |||
- М.: МВТУ им.Баумана, 1961, с.62-65 | |||
РАБОЧЕЕ КОЛЕСО ЦЕНТРОБЕЖНОГО ГРУНТОВОГО НАСОСА | 1999 |
|
RU2159360C2 |
КОЛЬЦЕВОЙ ДИФФУЗОР СТАТОРА ЦЕНТРОБЕЖНОГО НАСОСА | 1995 |
|
RU2103560C1 |
Рабочее колесо центробежного насоса | 1980 |
|
SU953275A1 |
SU 431850 A, 15.06.1974 | |||
Бесколесный шариковый ход для железнодорожных вагонов | 1917 |
|
SU97A1 |
US 3082695 A, 26.03.1963. |
Авторы
Даты
2003-06-10—Публикация
2001-05-14—Подача