Центробежный насос для механической поддержки кровообращения Российский патент 2019 года по МПК A61M1/12 

Описание патента на изобретение RU2683069C1

Изобретение относится к медицинской технике, а именно к имплантируемым устройствам для механической поддержки кровообращения, может быть использовано для лечения больных с терминальной стадией сердечной недостаточности, а также в качестве основного насоса в системах вспомогательного экстраракорпорального кровообращения.

Применение логарифмической кривой описано в устройстве для перекачивания крови (RU 2430748, С2), однако в известном устройстве оно описано для профилирования лопасти осевого насоса.

Известно устройство для механической поддержки кровообращения RotaFlow, описанное WO 2012034569 А2. Данное устройство представляет собой центробежный насос, состоящий из камеры, на вход которого подается жидкость и при вращении 4-х лопаточного ротора закрытого типа за счет центробежных сил жидкость перекачивается в выходной тракт, создавая расход жидкости и перепад давления, обеспечивая тем самым поддержку кровообращения. Вращение ротора обеспечивается за счет вращения внешнего магнитного поля.

Из-за несовершенной формы лопаток рабочего колеса минимизация вихреобразования является недостаточной, следствием чего является гемолиз и тромбоз крови при заданных параметрах производительности. Недостаток данного устройства заключается в гемолизирующем эффекте, который во многом связан с лопастной конструкцией вращающегося элемента (ротора). Ввиду этого насос можно использовать только для кратковременной поддержки кровообращения.

Техническая проблема состоит в создании малотравматичного устройства для перекачивания крови в виде центробежного насоса, обеспечивающего пониженную травму форменных элементов крови за счет снижения турбулентности и вихреобразования потока крови.

Медико-технический результат заключается в снижении гемолиза и вероятности образования тромбоза в устройствах центробежного типа для перекачивания крови при заданных параметрах расхода крови за счет снижении турбулентности и вихреобразования потока крови путем обеспечения условий ламинарного течения крови с отсутствием зон застоя при использовании роторов центробежных насосов канального типа за счет использования в них оригинальной геометрии каналов.

Таким образом, медико-техническим результатом заявляемого изобретения является минимизации гемолиза форменных элементов крови и вероятности образования тромбов в насосе, возникающих при движении крови в центробежном насосе при заданных параметрах расхода и перепада давления за счет снижения сдвиговых напряжений и времени экспозиции крови в критических областях.

Наиболее эффективно применение данного устройства для разработки при проектировании малогабаритных медицинских устройств, перекачивающих кровь, а также в насосах, где требуется минимальная деструкция перекачиваемого продукта.

Предлагаемое изменение геометрии проточной зоны ротора центробежного насоса позволяет формировать ламинарный поток крови в насосе, включая выходной тракт насоса, снижая интенсивность и объем вихревых зон и зон стагнации крови, в результате чего минимизируется гемолиз и тромбоз крови.

Сущность изобретения заключается в следующем.

В диске ротора центробежного насоса для перекачивания крови с наружным диаметром 20-70 мм сформированы (вырезаны) 2-8 трубчатых канала постоянного сечения с диаметром 1-6 мм. Каналы закручены по логарифмической кривой на 0.4-10 витков так, что угол выхода каждого канала из ротора, образованный касательной к соответствующей логарифмической кривой и касательной к наружной окружности диска ротора в точке пересечения упомянутых кривых составляет 1-15 градусов.

Каналы в частном случае имеют одинаковый диаметр постоянного сечения для каждого канала.

Каналы могут иметь различный диаметр, варьирующий от 1 до 6 мм.

В частном случае в диске ротора с наружным диаметром 46 мм сформированы (вырезаны) 4 канала с сечением 5 мм каждый, закрученных на 0.6 витка так, что угол выхода каждого канала из ротора, составляет 9 градусов.

Патентуемое изобретение представляет собой усовершенствованную модель построения проточной области ротора насоса центробежного типа. Главной особенностью модели является формирование трубчатых спиралевидных каналов с постоянным диаметром в элементе вращения с вариативной геометрией закрутки.

Изобретение поясняется следующими фигурами.

На фиг. 1 изображен общий изометрический внешний вид ротора устройства центробежного типа для перекачивания крови с 4 каналами; на фиг. 2 - чертеж геометрии построения логарифмической кривой трубчатого канала ротора (вид сверху), фиг. 3-ротор с 5 каналами; фиг. 4 - ротор с 4 каналами; фиг. 5 - ротор с 3 каналами, где:

1 - ротор;

2 - трубчатый канал;

3 - касательная к наружному диаметру диска ротора в точке выхода потока;

4 - касательная к логарифмической кривой в точке выхода потока;

α - угол выхода канала из ротора, который определяется касательной между вектором скорости потока в точке выхода из канала и касательной к вектору радиальной скорости в той же точке;

Dк - диаметр трубчатого канала.

Логарифмическая кривая характеризуется следующими параметрами:

θ - угол отклонения от нуля;

r - радиус-вектор точки спирали;

R - радиус-вектор точки выхода канала из ротора.

Вращающейся элемент (ротор) (1) содержит проточную зону, сформированную каналами (2) постоянного кругового сечения, сформированного по направляющей кривой.

Канал по диаметру представляет собой сформированное по логарифмической спирали круглое сечение. Использование логарифмической спирали, определяется одним из ее свойств, которое состоит в том, что угол, составляемый касательной в произвольной точке кривой по отношению к радиус-вектору r точки касания, является постоянным. Это позволяет при заданном диаметре канала получить постоянную скорость движения жидкости в нем.

Угол выхода канала из ротора, составляемый касательными к окружности диска ротора (3) и касательной к логарифмической кривой (4) в точке их пересечения α, должен стремится к нулю. Это обеспечит максимальное сопряжение потока жидкости при переходе из ротора в выходную магистраль (улитку и диффузор).

Диаметр сечения канала Dк и количество каналов n зависит от суммарной площади сечений выхода всех каналов, которая должна быль не меньше площади входа Sin в ротор, а также от размера боковой (радиальной) стенки ротора h. Диаметр конкретного канала может варьировать при соблюдении следующего условия. Условие соблюдения размеров:

Количество витков спирали, образующей канал, предполагает плавное протекание единицы объема жидкости за счет создания ламинарного течения в канале постоянного сечения.

В общем случае трубчатый канал ротора имеет перпендикулярный оси ротора вход, в котором угол выхода α равен 90 градусов.

Угол α канала ротора может достигать минимального значения в 1 градус.

Канал имеет тангенциальный или касательный вход относительно внутреннего проточного цилиндрического входного отверстия ротора.

Количество каналов может варьировать от 2 до 8.

Параметры спирали, такие как угол отклонения от нуля θ, коэффициент радиуса витков а и коэффициент расстояния между витками b варьируют в зависимости от заданных габаритных параметров ротора и канала, при соблюдении пунктов проектирования.

В ходе разработки насоса был изготовлен центробежный насоса с ротором, проточная часть которого состоит из четырех каналов, закрученных по логарифмической кривой. Сечение каналов имеет диаметр 5 мм. Вход в канал имеет касательное расположение к входному внутреннему диаметру ротора. Угол α составляет 9 градусов.

Гидродинамический макет центробежного насоса с ротором канального типа испытан на специальном стенде. Проведенные гидродинамические испытания и испытания моделируемого образца в системах автоматизированного проектирования, которые заключались в сравнении гидродинамических параметров насосов с канальным ротором и лопаточным ротором RotaFlow при одинаковом числе лопаток и каналов, а также соблюденными условиями построения каналов подтвердили снижение турбулентного потока и уменьшения максимального значения касательного напряжения на поверхностях ротора и центробежного насоса до 50 Па при использовании предлагаемого канального ротора.

Исследования в системах автоматизированного проектирования вариации угла выхода канала α из ротора показали снижение коэффициента турбулентности при значениях, близких к нулю.

Результаты математического моделирования и разработки опытного образца показали, что за счет конструирования проточной зоны ротора центробежного насоса в виде трубчатых каналов получено численное снижение показателей гемолиза по сравнению с лопаточным при соблюдении равнозначности по габаритам и функциональным характеристикам конструкции.

Апробация центробежного насоса in vitro с ротором канального типа в экспериментах по исследованию гемолиза с использованием донорской крови показала минимизацию травмы форменных элементов крови по сравнению с коммерческими центробежными насосами Biopump (Medtronic Inc), Rotaflow (Maquet).

Заявляемое изобретение представляет собой новое техническое решение, относящееся к классу имплантируемых технических средств, используемых для перекачивания крови и являющееся промышленно применимым, поскольку предлагаемый ротор может быть изготовлен предприятиями медицинской промышленности и не имеет высокой сложности изготовления.

Похожие патенты RU2683069C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ПЕРЕКАЧИВАНИЯ КРОВИ 2017
  • Иткин Георгий Пинкусович
  • Байбиков Александр Сергеевич
  • Кулешов Аркадий Павлович
RU2669985C1
Искусственное сердце 2020
  • Иткин Георгий Пинкусович
  • Кулешов Аркадий Павлович
  • Дробышев Александр Александрович
  • Бучнев Александр Сергеевич
  • Носов Михаил Сергеевич
RU2732084C1
РАБОЧИЙ ОРГАН ЦЕНТРОБЕЖНОГО НАСОСА 2001
  • Байбиков А.С.
RU2205982C2
Воздушный сепаратор к системе экстракорпорального кровообращения 2023
  • Кулешов Аркадий Павлович
  • Дробышев Александр Александрович
  • Иткин Георгий Пинкусович
  • Бучнев Александр Сергеевич
  • Есипова Ольга Юрьевна
  • Шохина Елена Геннадьевна
RU2815528C1
Устройство и способ бивентрикулярного обхода сердца 2020
  • Иткин Георгий Пинкусович
  • Дробышев Александр Александрович
  • Бучнев Александр Сергеевич
  • Кулешов Аркадий Павлович
RU2734142C1
Устройство и способ управления потоком крови роторных насосов 2020
  • Иткин Георгий Пинкусович
  • Кулешов Аркадий Павлович
  • Носов Михаил Сергеевич
  • Бучнев Александр Сергеевич
  • Дробышев Александр Александрович
RU2725083C1
МАГИСТРАЛЬНЫЙ НЕФТЯНОЙ НАСОС И РАБОЧЕЕ КОЛЕСО МАГИСТРАЛЬНОГО НЕФТЯНОГО НАСОСА 2013
  • Валюхов Сергей Георгиевич
  • Житенёв Сергей Вячеславович
  • Веселов Валерий Николаевич
RU2537205C1
Устройство и способ управления потоком крови роторных насосов 2018
  • Иткин Георгий Пинкусович
  • Готье Сергей Владимирович
RU2665178C1
ЭЛЕКТРОНАСОСНЫЙ АГРЕГАТ ГОРИЗОНТАЛЬНОГО ТИПА 2012
  • Валюхов Сергей Георгиевич
  • Касимцев Владимир Владимирович
  • Печкуров Сергей Владимирович
  • Феропонтов Максим Петрович
  • Селиванов Николай Павлович
RU2503853C1
НАПРАВЛЯЮЩИЙ АППАРАТ ЦЕНТРОБЕЖНОГО НАСОСА 2011
  • Валюхов Сергей Георгиевич
  • Житенёв Алексей Иванович
  • Давыденко Александр Григорьевич
  • Печкуров Сергей Владимирович
  • Селиванов Николай Павлович
RU2448279C1

Иллюстрации к изобретению RU 2 683 069 C1

Реферат патента 2019 года Центробежный насос для механической поддержки кровообращения

Изобретение относится к медицинской технике, а именно к имплантируемым устройствам для механической поддержки кровообращения, может быть использовано для лечения больных с терминальной стадией сердечной недостаточности. В диске ротора центробежного насоса для перекачивания крови с наружным диаметром 20-70 мм сформированы 2-8 трубчатых канала постоянного сечения с диаметром 1-6 мм. Каналы закручены по логарифмической кривой на 0,4-10 витков так, что угол выхода каждого канала из ротора, образованный касательной к соответствующей логарифмической кривой и касательной к наружной окружности диска ротора в точке пересечения упомянутых кривых, составляет 1-15 градусов. Технический результат состоит в снижении гемолиза и тромбообразования. 3 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 683 069 C1

1. Ротор центробежного насоса для перекачивания крови, отличающийся тем, что в диске с наружным диаметром 20-70 мм сформированы 2-8 трубчатых канала постоянного сечения с диаметром 1-6 мм, закрученных по логарифмической кривой на 0,4-10 витков так, что угол выхода каждого канала из ротора, образованный касательной к соответствующей логарифмической кривой и касательной к окружности диска ротора, составляет 1-15 градусов.

2. Ротор по п. 1, отличающийся тем, что диаметры каналов равны.

3. Ротор по п. 1, отличающийся тем, что каналы имеют различный диаметр, варьирующий от 1 до 6 мм.

4. Ротор по п. 1, отличающийся тем, что в диске с наружным диаметром 46 мм сформированы 4 канала с диаметром 5 мм, закрученных на 0,6 витка так, что угол выхода каждого канала из ротора равен 9 градусам.

Документы, цитированные в отчете о поиске Патент 2019 года RU2683069C1

РОТОР, УСТРОЙСТВО, ПРЕОБРАЗУЮЩЕЕ ЭНЕРГИЮ ПОТОКА ТЕКУЧЕЙ СРЕДЫ, УСТРОЙСТВО, СОЗДАЮЩЕЕ ПОТОК ТЕКУЧЕЙ СРЕДЫ (ВАРИАНТЫ) И НАСОС 1996
  • Хармэн Джейден Дэвид
RU2168066C2
УСТРОЙСТВО ДЛЯ ПЕРЕКАЧИВАНИЯ КРОВИ 2009
  • Байбиков Александр Сергеевич
  • Вашуркин Дмитрий Владимирович
  • Готъе Сергей Владимирович
  • Гусев Алексей Николаевич
  • Иткин Георгий Пинкусович
  • Кузьмин Геннадий Сергеевич
  • Невзоров Андрей Михайлович
  • Селищев Сергей Васильевич
RU2430748C2
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1
US 2017246365 A1, 31.08.2017
JPH 10271738 A, 09.10.1998.

RU 2 683 069 C1

Авторы

Иткин Георгий Пинкусович

Кулешов Аркадий Павлович

Байбиков Александр Сергеевич

Бучнев Александр Сергеевич

Дмитриева Ольга Юрьевна

Дробышев Александр Александрович

Даты

2019-03-26Публикация

2018-03-29Подача