СПОСОБ ПОЛУЧЕНИЯ БУТИЛКАУЧУКА Российский патент 2003 года по МПК C08F210/12 

Описание патента на изобретение RU2209213C1

Изобретение относится к получению синтетических каучуков, в частности к получению бутилкаучука.

Известен способ получения бутилкаучука путем сополимеризации изобутилена и изопрена, в котором в качестве реакционной среды используется углеводородный растворитель, в частности изопентан, а для инициирования реакции полимеризации используется протонированный комплекс металлорганического соединения. Температура полимеризации составляет от -70 до -90oС. После полимеризатора реакционную смесь направляют на стадию выделения и сушки каучука (Синтетический каучук под редакцией И.В. Гармонова. Л.: Химия, 1983 г., стр. 299-300).

Основным недостатком этого способа является высокая вязкость получающихся растворов, не позволяющая работать с высокой концентрацией каучука в реакционной среде.

Наиболее близким к предлагаемому является способ получения бутилкаучука путем сополимеризации изобутилена с изопреном, где в качестве реакционной среды используется метилхлорид, не являющийся растворителем для бутилкаучука, а для инициирования реакции полимеризации используется катализатор Фриделя - Крафтса, в частности алюминийхлорид. Температура полимеризации составляет от -80 до -100oС, при этом образующийся каучук находится в реакционной среде в виде тонкодисперсной суспензии. После полимеризатора реакционную смесь направляют на стадию выделения и сушки каучука (В.М. Соболев, И. В. Бородина. Промышленные синтетические каучуки. М.: Химия, 1977 г., стр. 175-177).

Основным недостатком этого способа является свойство мелких частиц агломерироваться, превращаясь в ком, налипать на внутренние устройства реактора и, в результате, приводить к прекращению процесса и выводу реактора на промывку, причем с ростом концентрации в полимеризаторе возрастает вероятность загрязнения реакционного пространства склонным к агломерации и прилипанию полимером. Таким образом, в данном процессе необходимо выбирать оптимальные условия между длительностью непрерывной работы и концентрацией полимера в реакторе.

Задачей настоящего изобретения является увеличение продолжительности непрерывной работы полимеризатора при увеличенных концентрациях полимера в реакционной смеси, поступающей на дегазацию, снижение энергозатрат и увеличение производительности процесса.

Указанный результат достигается предлагаемым способом получения бутилкаучука путем сополимеризации изобутилена и изопрена при пониженной температуре в присутствии катализатора Фриделя - Крафтса с использованием в качестве реакционной среды метилхлорида с образованием полимеризационной реакционной смеси твердого полимера в метилхлориде с последующей дегазацией этой смеси, причем перед дегазацией реакционную массу пропускают через гидроциклон, из периферийной зоны которого отбирают поток, возвращаемый на полимеризацию, а из центральной зоны - поток, направляемый на дегазацию.

Компоненты для получения бутилкаучука формируются из, по крайней мере, одной из нижеперечисленных смесей:
- исходная шихта из изобутилена, изопрена и метилхлорида,
- вышеуказанный возвратный поток из гидроциклона и исходная шихта, смешиваемые в гидроструйном аппарате при подаче их в полимеризатор,
- вышеуказанный возвратный поток из гидроциклона, возвратный продукт из изобутилена, изопрена и метилхлорида после дегазации взвеси каучука, смешиваемые в отдельном гидроструйном аппарате, при подаче исходных мономеров непосредственно в полимеризатор, при этом катализаторный раствор подают либо в полимеризатор, либо в любой из возвратных потоков.

Гидроструйный аппарат представляет собой гидроструйный насос и служит для осуществления процесса взаимного перемешивания вышеуказанных потоков и последующего их совместного транспортирования.

Процесс получения бутилкаучука осуществляется по схеме, изображенной на фиг.1.

Смесь мономеров в растворе метилхлорида (шихту) подают (поток 1) в реактор 2 через штуцер 3. Одновременно в реактор 2 через штуцер 4 подают раствор хлорида алюминия в метилхлориде (поток 5). Реакционную смесь интенсивно перемешивают многоярусной мешалкой 6. Температуру в реакторе 2 выдерживают изменением подачи катализаторного раствора.

Взвесь образовавшегося бутилкаучука направляют (поток 7) в цилиндрическую часть гидроциклона 8 по касательной к стенке. Суспензия каучука, приобретая вращательное движение и проходя сначала цилиндрическую, а затем и коническую часть гидроциклона 8 и под действием центробежной силы, разделяется на два потока, отличающиеся по плотности. Менее плотная часть располагается в центральной части гидроциклона, а более плотная отбрасывается на периферию. Менее плотную часть потока, содержащую в концентрированном виде наиболее крупные частицы каучука, выводят через штуцер 9 гидроциклона 8 потоком 10 в дегазатор 11, где производят отпарку метилхлорида и незаполимеризовавшихся мономеров (возвратного продукта) от каучука. Возвратный продукт (поток 12) направляют на переработку. После соответствующей подготовки, заключающейся в выделении продукта, пригодного для полимеризации (смесь: метилхлорид, изобутилен, изопрен), возвратный продукт направляют на приготовление шихты. Более плотный поток 13, содержащий в разбавленном виде мелкие частицы каучука, через штуцер 14 гидроциклона 8 насосом 15 через регулирующий клапан 16 направляют в реактор 2 через штуцер 17. Во время процесса регулируют расход потока 13 и фиксируют его расходомером 18, замеряют концентрацию каучука в полимеризаторе и в потоке, поступающем на насос 15. Для отвода тепла, образующегося в результате протекания реакции полимеризации, и для поддержания необходимой температуры по высоте реактора в точках 19 и 20 в теплообменные элементы 21 подают потоком 22 жидкий этилен, который выводят в парообразном виде потоком 23. В этом процессе за счет вывода на дегазацию преимущественно крупных частиц полимера (поток 10), которые наиболее склонны к агломерации и налипанию на внутренние устройства, снижается вероятность загрязнения полимеризатора. В результате отбора разбавленной суспензии из периферийной зоны гидроциклона в значительной степени увеличивается концентрация суспензии, поступающей на дегазацию (поток 10). Поскольку поток разбавленной суспензии (поток 13) направляют обратно в полимеризатор, а он практически не содержит крупных частиц полимера, время пребывания крупных частиц в реакционной зоне сокращается, что благоприятно отражается на продолжительности непрерывной работы реактора. Поток разбавленной суспензии (поток 13), направляемый в полимеризатор, снижает концентрацию полимера в нем, что также уменьшает вероятность забивки полимеризатора.

На фиг.2 изображена схема варианта осуществления способа, когда насос 15 заменен гидроструйным аппаратом, в котором в качестве рабочей жидкости используют шихту.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1
Процесс получения бутилкаучука осуществляли по схеме, изображенной на фиг.1.

Смесь мономеров в растворе метилхлорида, содержащую 25 мас.% изобутилена, 0,5 мас.% изопрена и 74,5 мас.% метилхлорида (шихту) подавали в реактор 2 через штуцер 3 в количестве 15 т/ч. Одновременно в реактор 2 через штуцер 4 подавали раствор хлорида алюминия в метилхлориде с концентрацией 0,1 мас. %. Реакционную смесь интенсивно перемешивали многоярусной мешалкой 6. Температуру в реакторе 2 выдерживали в пределах минус 92 - минус 88oС, регистрируя ее термометрами сопротивления в точках 19 и 20.

Взвесь образовавшегося бутилкаучука направляли (поток 7) в гидроциклон 8. Менее плотную часть потока, содержащую в концентрированном виде наиболее крупные частицы каучука, выводили через штуцер 9 гидроциклона 8 в дегазатор 11. Более плотный поток, содержащий в разбавленном виде мелкие частицы каучука, через штуцер 14 гидроциклона 8 насосом 15 через регулирующий клапан 16 направляли в реактор 2 через штуцер 17. Во время процесса регулировали расход от насоса 15, замеряли концентрацию каучука в полимеризаторе и в потоке 13, поступающем на насос 15. Концентрацию каучука в потоке 10, поступающем на отгонку метилхлорида и незаполимеризовавшихся мономеров, определяли по полученному каучуку. Процесс проводили до тех пор, пока мощность на валу мешалки 6 не превысила номинал.

Пример 2
Процесс проводили так же, как в примере 1, но катализаторный раствор (поток 5) подавали на всасывание насоса 15, а не в штуцер 4.

Пример 3
Процесс проводили так же, как в примере 1, но вместо насоса 15 использовали гидроструйный аппарат, в котором рабочей жидкостью была шихта (поток 1) (фиг.2).

Пример 4
Процесс проводили так же, как в примере 3, но смесь мономеров в реактор подавали отдельно в штуцер 17, а рабочей жидкостью был возвратный продукт после дегазации взвеси каучука, содержащий 3-5% изобутилена.

Пример 5
Процесс проводили так же, как в примере 4, но катализаторный раствор подавали в поток возвратного продукта после дегазации взвеси каучука, направляемого на гидроструйный аппарат.

Результаты, полученные в примерах 1-5, приведены в таблице в сравнении с контрольным пробегом (по прототипу).

Во всех примерах достигнуто значительное увеличение концентрации полимера в суспензии, поступающей на дегазацию (столбец 7), что приводит к сокращению энергозатрат, снижению концентрации полимера в реакторе (столбец 6), что приводит к увеличению длительности непрерывной работы реактора (столбец 11) и производительности реактора (столбец 8) (см. табл.).

Похожие патенты RU2209213C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ БУТИЛКАУЧУКА 1999
  • Щербань Г.Т.
  • Шияпов Р.Т.
  • Мустафин Х.В.
  • Шамсутдинов В.Г.
  • Гавриков В.Н.
  • Якушев Ю.Н.
  • Яковлев А.М.
  • Никин В.А.
RU2155195C1
СПОСОБ ПОЛУЧЕНИЯ БУТИЛКАУЧУКА 2006
  • Бусыгин Владимир Михайлович
  • Гильманов Хамит Хамисович
  • Гильмутдинов Наиль Рахматуллович
  • Сахабутдинов Анас Гаптынурович
  • Софронова Ольга Владимировна
  • Шияпов Равиль Тагирович
  • Гавриков Виктор Николаевич
  • Хабибуллин Рафик Хатмуллаевич
RU2295542C1
СПОСОБ ПОЛУЧЕНИЯ БУТИЛКАУЧУКА 1999
  • Щербань Г.Т.
  • Шияпов Р.Т.
  • Шамсутдинов В.Г.
  • Мустафин Х.В.
  • Зиятдинов А.Ш.
  • Иштеряков А.Д.
  • Якушев Ю.Н.
  • Гавриков В.Н.
RU2158272C1
СПОСОБ ПОЛУЧЕНИЯ БУТИЛКАУЧУКА 2001
  • Щербань Г.Т.
  • Шияпов Р.Т.
  • Шамсутдинов В.Г.
  • Якушев Ю.Н.
  • Гавриков В.Н.
  • Хабибуллин Р.Х.
  • Хакимов Р.Г.
  • Хасанов Н.Т.
RU2200168C2
СПОСОБ ПОЛУЧЕНИЯ БУТИЛКАУЧУКА 2009
  • Бусыгин Владимир Михайлович
  • Гильманов Хамит Хамисович
  • Гильмутдинов Наиль Рахматуллович
  • Сахабутдинов Анас Гаптынурович
  • Нестеров Олег Николаевич
  • Гавриков Виктор Николаевич
  • Хабибуллин Рафик Хатмуллаевич
  • Погребцов Валерий Павлович
  • Сафин Дамир Хасанович
  • Софронова Ольга Владимировна
  • Челнокова Савия Миннезакиевна
  • Маркина Елена Александровна
RU2415154C1
Способ получения бутилкаучука 2017
  • Нестеров Олег Николаевич
  • Сахабутдинов Анас Гаптынурович
  • Аглямов Ирек Ангамович
  • Порецков Анатолий Юрьевич
  • Хабибуллин Рафик Хатмуллаевич
  • Газетдинов Айдар Ханифович
  • Миронов Игорь Васильевич
  • Софронова Ольга Владимировна
RU2659075C1
Способ получения бутилкаучука 2016
  • Сахабутдинов Анас Гаптынурович
  • Аглямов Ирек Ангамович
  • Гавриков Виктор Николаевич
  • Хабибуллин Рафик Хатмуллаевич
  • Кубанов Кирилл Михайлович
  • Софронова Ольга Владимировна
  • Челнокова Савия Миннезакиевна
RU2614457C1
СПОСОБ ПОЛУЧЕНИЯ БУТИЛКАУЧУКА 1999
  • Щербань Г.Т.
  • Шияпов Р.Т.
  • Шамсутдинов В.Г.
  • Рязанов Ю.И.
  • Софронова О.В.
  • Иштеряков А.Д.
  • Савин Ю.И.
  • Гильмуллин Р.А.
RU2155194C1
СПОСОБ ПОЛУЧЕНИЯ БУТИЛКАУЧУКА 2014
  • Сахабутдинов Анас Гаптынурович
  • Аглямов Ирек Ангамович
  • Гавриков Виктор Николаевич
  • Хабибуллин Рафик Хатмуллаевич
  • Софронова Ольга Владимировна
  • Челнокова Савия Миннезакиевна
RU2565759C1
СПОСОБ ПОЛУЧЕНИЯ БУТИЛКАУЧУКА 2009
  • Бусыгин Владимир Михайлович
  • Гильманов Хамит Хамисович
  • Гильмутдинов Наиль Рахматуллович
  • Сахабутдинов Анас Гаптынурович
  • Нестеров Олег Николаевич
  • Шамсутдинов Валерий Гарафович
  • Хабибуллин Рафик Хатмуллаевич
  • Хасанов Нариман Турганович
  • Погребцов Валерий Павлович
  • Шияпов Равиль Тагирович
  • Софронова Ольга Владимировна
  • Челнокова Савия Минизакиевна
RU2394844C1

Иллюстрации к изобретению RU 2 209 213 C1

Реферат патента 2003 года СПОСОБ ПОЛУЧЕНИЯ БУТИЛКАУЧУКА

Изобретение относится к получению синтетических каучуков, в частности к получению бутилкаучука. Способ получения бутилкаучука осуществляют путем сополимеризации изобутилена и изопрена при пониженной температуре в присутствии катализатора Фриделя - Крафтса с использованием в качестве реакционной среды метилхлорида с образованием полимеризационной реакционной смеси твердого полимера в метилхлориде с последующей дегазацией этой смеси. Способ, отличающийся тем, что перед дегазацией реакционную смесь пропускают через гидроциклон, из периферийной зоны которого отбирают поток, возвращаемый на сополимеризацию, а из центральной зоны - поток, направляемый на дегазацию. Исходные компоненты для получения бутилкаучука формируются из по крайней мере одной из нижеперечисленных смесей: из исходной шихты из изобутилена, изопрена и метилхлорида; из возвратного потока из гидроциклона и исходной шихты, смешиваемые в гидроструйном аппарате; вышеуказанного возвратного потока из гидроциклона, возвратного продукта из изобутилена, изопрена и метилхлорида после дегазации взвеси каучука, смешиваемые в гидроструйном аппарате при подаче мономеров непосредственно в полимеризатор. Катализаторный раствор подают в любой поток, возвращаемый на сополимеризацию либо в полимеризатор. 2 ил., 1 табл.

Формула изобретения RU 2 209 213 C1

Способ получения бутилкаучука путем сополимеризации изобутилена и изопрена при пониженной температуре в присутствии катализатора Фриделя - Крафтса с использованием в качестве реакционной среды метилхлорида с образованием полимеризационной реакционной смеси твердого полимера в метилхлориде с последующей дегазацией этой смеси, отличающийся тем, что перед дегазацией реакционную смесь пропускают через гидроциклон, из периферийной зоны которого отбирают поток, возвращаемый на сополимеризацию, а из центральной зоны - поток, направляемый на дегазацию, при этом исходные компоненты для получения бутилкаучука формируются из по крайней мере одной из нижеперечисленных смесей: исходная шихта из изобутилена, изопрена и метилхлорида; вышеуказанный возвратный поток из гидроциклона и исходная шихта, смешиваемые в гидроструйном аппарате при подаче их в полимеризатор; вышеуказанный возвратный поток из гидроциклона, возвратный продукт из изобутилена, изопрена и метилхлорида после дегазации взвеси каучука, смешиваемые в отдельном гидроструйном аппарате, при подаче исходных мономеров непосредственно в полимеризатор, при этом каталитизаторный раствор подают либо в полимеризатор, либо в любой из возвратных потоков.

Документы, цитированные в отчете о поиске Патент 2003 года RU2209213C1

СОБОЛЕВ В.М
и др
Промышленные синтетические каучуки
- М.: Химия, 1977, с
Ручной прибор для загибания кромок листового металла 1921
  • Лапп-Старженецкий Г.И.
SU175A1
Синтетический каучук/ Под ред
И.В
ГАРМОНОВА
- Л.: Химия, 1983, с
АВТОМАТ ДЛЯ ПУСКА В ХОД ПОРШНЕВОЙ МАШИНЫ 1920
  • Палько Г.И.
SU299A1

RU 2 209 213 C1

Авторы

Добровинский В.Е.

Комаров С.М.

Беспалов В.П.

Сальников С.Б.

Бусыгин В.М.

Мустафин Х.В.

Рязанов Ю.И.

Шияпов Р.Т.

Шамсутдинов В.Г.

Иштеряков А.Д.

Гильмуллин Р.А.

Якушев Ю.Н.

Софронова О.В.

Даты

2003-07-27Публикация

2002-04-01Подача