СПОСОБ ПОЛУЧЕНИЯ ПЯТИВОДНОГО МЕТАСИЛИКАТА НАТРИЯ Российский патент 2003 года по МПК C01B33/32 B01D9/02 C30B7/08 C30B29/34 

Описание патента на изобретение RU2213694C1

Изобретение относится к производству щелочных силикатов, в частности к способам получения пятиводного метасиликата натрия, и может найти применение в химической промышленности в производстве моющих, чистящих, отбеливающих, дезинфицирующих средств, в текстильной промышленности как стабилизатор перекисного беления тканей и отбеливатель сырья, в металлургической и машиностроительной промышленности для удаления соляной кислоты с поверхности металла, в нефтеперерабатывающей отрасли в качестве коагулянта.

Известен способ получения пятиводного метасиликата натрия из натриево-силикатных смесей с последующим центрифугированием полученной пульпы путем выделения готового продукта из смеси раствора едкого натра и девятиводного метасиликата натрия при Ж:Т=2-3 и температуре 15-20oС [1].

Недостатком данного способа является длительность производственного процесса из-за наличия дополнительной операции получения девятиводного метасиликата натрия, требующей дополнительных затрат, что экономически нецелесообразно.

Известен также способ получения пятиводного метасиликата натрия путем ввода в силикатный натриево-калиевый кремнеземистый раствор гидроокиси натрия до модуля осаждения NaOH:KOH, равного 0,96; 1,6; и 2 соответственно с дальнейшей кристаллизацией и центрифугированием пульпы [2].

Данный способ, однако, не обеспечивает достаточной чистоты продукта из-за наличия в нем примесей калия и, кроме того, не позволяет получить кристаллы крупной структуры. Выход готового продукта составляет около 40%.

Целью изобретения является снижение остаточной влажности пятиводного метасиликата натрия, улучшение его качества и обеспечение высокого выхода продукта за счет увеличения размера кристалла.

Поставленная цель достигается способом получения пятиводного метасиликата натрия путем его выделения методом кристаллизации из натрий-кремнеземистого раствора. Отличительной особенностью является то, что процесс кристаллизации проводят в политермическом режиме при скорости охлаждения раствора 0,5-2 град/ч.

Полученный кристаллизат подвергают термообработке при температуре 40-60oС. Кроме того, в него вводят аморфный кремнезем в пределах от 0,6 до 1,5% и вновь полученную смесь подвергают термообработке при температуре 40-60oС. В процессе кристаллизации возможно введение затравки при температуре раствора 50-55oС.

Проведение охлаждения со скоростью меньше 0,5 град/ч экономически нецелесообразно из-за увеличения длительности процесса, что приводит к большому расходу воды. При охлаждении со скоростью более 2 град/ч необходимый размер кристалла не достигается.

Указанный предел температур термообработки кристаллизата 40-60oС обеспечивает оптимальный режим удаления влаги.

Введение кондиционирующей добавки аморфного кремнезема в количестве 0,6-1,5% и дальнейшая термообработка полученной смеси позволяет снизить влажность продукта, придать ему сыпучесть и повысить содержание основного вещества.

Введение в раствор затравки (пятиводного метасиликата натрия) при температуре раствора 50-55oС ускоряет начало процесса кристаллизации.

Изобретение обеспечивает получение пятиводного метасиликата натрия в виде кристаллического непылящего продукта с содержанием основного вещества не менее 95% и низким содержанием нерастворимых в воде примесей и окиси железа.

Предложенный способ осуществляют следующим образом.

Пример 1.

22 м3 исходного раствора, содержащего (г/дм3): SiO2 - 160, Na2O - 380, при температуре 60-65oС закачивают в промышленный кристаллизатор изогидрического типа объемом 24 м3, снабженный рамной мешалкой с регулируемым числом оборотов, и охлаждают до температуры 54-51oС. Затем, при отключенном охлаждении, выдерживают раствор в течение 2-4 ч до начала процесса кристаллизации, сопровождающегося подъемом температуры реакционной массы. После чего охлаждение ведут со скоростью 0,5-2 град/ч до температуры суспензии 18-20oС. После центрифугирования кристаллизат подвергают сушке при температуре 40-60oС. Полученный продукт имеет состав (мас.%): Na2O - 29,82, SiO2 - 27,70, H2O - 41,8, Fе2О3 - 0,012, нерастворимый в воде остаток - 0,05%. Средневзвешенный размер кристаллов - 800 мкм, выход - 8 т.

Пример 2.

Процесс получения пятиводного метасиликата натрия осуществляют по примеру 1. Исходный раствор содержит (г/дм3): SiO2 - 150, Na2O - 380. После охлаждения до температуры 51-54oС при отключенном охлаждении вводят затравку (пятиводный метасиликат натрия) и выдерживают раствор в течение 2 ч, после чего охлаждение ведут со скоростью 0,5-2 град/ч до температуры суспензии 18-20oС. Полученный продукт имеет состав (мас. %): Na2O - 29,91, SiO2 - 27,65, H2O - 42,0, Fе2О3 - 0,012, нерастворимый остаток - 0,05. Средневзвешенный размер кристаллов - 700 мкм. Выход продукта - 8 т.

Пример 3.

Процесс получения пятиводного метасиликата натрия осуществляют по примеру 1, но используют исходный раствор, содержащий (г/дм3): SiO2 - 160, Na2O - 400. Охлаждение проводят со скоростью 0,5-2 град/ч. В полученный кристаллизат вводят аморфный кремнезем в соотношении 100:1, после чего готовую смесь подвергают термообработке при температуре 40-60oС. Полученный продукт по составу и свойствам аналогичен описанному в примере 2. Состав готового продукта (мас. %): Na2O - 29,45, SiO2 - 27,72, Н2О - 41,6, Fе2О3 - 0,01, нерастворимый остаток - 0,04. Средневзвешенный размер кристаллов - 850 мкм.

В отличие от примера 2 затравка в процесс кристаллизации не вводилась.

Предлагаемый способ позволяет получить кристаллы крупного размера, что способствует качественному отжиму продукта, снижению остаточной влажности, уменьшению примесей в виде окиси железа и нерастворимого в воде остатка. Кроме того, наличие крупных кристаллов в пульпе обеспечивает снижение потерь при центрифугировании и позволяет повысить выход продукта с операции до 70%.

В настоящее время на Березниковском ООО "Сода-хлорат" на базе действующего производства девятиводного метасиликата натрия наработана опытно-промышленная партия пятиводного метасиликата натрия, отвечающего высоким требованиям потребителей по качественным показателям, что позволило предприятию получить прибыль от реализации высококачественного и рентабельного продукта.

ИСТОЧНИКИ ИНФОРМАЦИИ
1. Авторское свидетельство 676553, С 01 В 33/32.

2. Авторское свидетельство 259068, С 01 В 33/32.

Похожие патенты RU2213694C1

название год авторы номер документа
Способ получения девятиводного метасиликата натрия 1985
  • Мурашкевич Анна Николаевна
  • Воробьев Николай Иванович
  • Сечко Сергей Иванович
  • Старовойтов Николай Павлович
SU1286514A1
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОГИДРАТОВ МЕТАСИЛИКАТА НАТРИЯ ПЯТИВОДНЫХ, ШЕСТИВОДНЫХ, ДЕВЯТИВОДНЫХ 2010
  • Марьин Сергей Анатольевич
RU2473465C2
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА ЦИНКА ИЗ ТЕХНОГЕННОГО СЫРЬЯ 2002
  • Казанцев В.П.
  • Кудрявский Ю.П.
  • Анашкие В.С.
RU2221063C2
СПОСОБ ПОЛУЧЕНИЯ МЕТАСИЛИКАТОВ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ, МАГНИЯ И СВИНЦА 1996
  • Факеев А.А.
  • Рябенко Е.А.
  • Гайсин Л.Г.
  • Бусыгин В.М.
RU2104928C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОМОДУЛЬНОГО ЦЕОЛИТА ТИПА Y 1998
  • Павлов М.Л.
  • Левинбук М.И.
  • Бакланов В.Б.
  • Смирнов В.К.
  • Бодрый А.Б.
  • Видинеев Г.А.
  • Суркова Л.В.
RU2151739C1
СПОСОБ ПОЛУЧЕНИЯ ОСНОВЫ ХОЗЯЙСТВЕННОГО МЫЛА И МОЮЩИХ СРЕДСТВ, СОДЕРЖАЩИХ СИЛИКАТЫ НАТРИЯ 1999
  • Бавика В.И.
  • Беденко В.Г.
  • Чистяков Б.Е.
RU2170244C2
СПОСОБ ИЗГОТОВЛЕНИЯ ЛЕГКОВЕСНОГО ВЫСОКОКРЕМНЕЗЕМИСТОГО МАГНИЙСОДЕРЖАЩЕГО ПРОППАНТА ДЛЯ ДОБЫЧИ СЛАНЦЕВЫХ УГЛЕВОДОРОДОВ 2012
  • Пейчев Виктор Георгиевич
  • Плотников Василий Александрович
  • Плинер Александр Сергеевич
  • Тиньгаев Иван Анатольевич
RU2513792C1
СПОСОБ ПРИГОТОВЛЕНИЯ МИКРОКРИСТАЛЛИЧЕСКОГО ЦЕОЛИТА NaY 2016
  • Доронин Владимир Павлович
  • Сорокина Татьяна Павловна
  • Потапенко Олег Валерьевич
  • Липин Петр Владимирович
  • Дмитриев Константин Игоревич
RU2627900C1
СПОСОБ ИССЛЕДОВАНИЯ ФАЗОВЫХ ПРЕВРАЩЕНИЙ 2002
  • Кононова Н.Г.
  • Кох А.Е.
  • Федоров П.П.
RU2229702C2
ЦЕОЛИТ ТИПА MOR И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2019
  • Князева Елена Евгеньевна
  • Никифоров Александр Игоревич
  • Пономарева Ольга Александровна
  • Иванова Ирина Игоревна
RU2744166C1

Реферат патента 2003 года СПОСОБ ПОЛУЧЕНИЯ ПЯТИВОДНОГО МЕТАСИЛИКАТА НАТРИЯ

Изобретение относится к производству щелочных силикатов и может найти применение в химической промышленности в производстве моющих, чистящих, отбеливающих, дезинфицирующих средств, в текстильной, металлургической, машиностроительной, нефтеперерабатывающей и других отраслях. Сущность изобретения: пятиводный метасиликат натрия получают путем его выделения методом кристаллизации из натрий-кремнеземистого раствора. Отличительной особенностью является то, что процесс кристаллизации проводят в политермическом режиме при скорости охлаждения раствора 0,5-2oС/ч. Полученный кристаллизат подвергают термообработке при температуре 40-60oС. Кроме того, в него вводят аморфный кремнезем в пределах от 0,6 до 1,5% и вновь полученную смесь подвергают термообработке при температуре 40-60oС. В процессе кристаллизации возможно введение затравки при температуре раствора 50-55oС. Изобретение позволяет снизить остаточную влажность пятиводного метасиликата натрия, улучшить его качество и обеспечивает высокий выход продукта за счет увеличения размера кристалла. 2 з.п.ф-лы.

Формула изобретения RU 2 213 694 C1

1. Способ получения пятиводного метасиликата натрия путем его выделения кристаллизацией из щелочно-кремнеземистого раствора, отличающийся тем, что в качестве последнего используют натрий-кремнеземистый раствор, процесс кристаллизации ведут в политермическом режиме при скорости охлаждения раствора 0,5-2oС/ч, а полученный кристаллизат подвергают термообработке при температуре 40-60oС. 2. Способ по п.1, отличающийся тем, что в полученный кристаллизат вводят от 0,6 до 1,5% аморфного кремнезема, после чего смесь подвергают термообработке при температуре 40-60oС. 3. Способ по п.1, отличающийся тем, что в процессе кристаллизации затравку вводят при температуре 50-55oС.

Документы, цитированные в отчете о поиске Патент 2003 года RU2213694C1

СПОСОБ ПОЛУЧЕНИЯ ГИДРОМЕТАСИЛИКАТОВ НАТРИЯ С ВОСЬМЬЮ, ШЕСТЬЮ И ПЯТЬЮ МОЛЕКУЛАМИ ВОДЫ 0
SU259068A1
УСТРОЙСТВО ДЛЯ ПИТАНИЯВЫСОКОИНТЕНСИВНЫХ ИСТОЧНИКОВ СВЕТАОТ СЕТИ ПЕРЕМЕННОГО ТОКА21.Изобретение относится к устройствам, обеспечивающим зажигание и питание газоразрядных ламп от сети переменного тока.Известны устройства для питания газоразрядных ламп, содержащие импульсный трансформатор, вторичная обмотка которого включена в цепь лампы, а первичная подсоединена к сетр! переменного тока последовательно с коммутатором и рабочим конденсатором.Однако в известных устройствах сеть перегружена емкостными и импульсными токами и имеется высокий уровень радиопомех, наводимых в питающей сети.10которых соединена со -вторым выводом сети переменного тока.•На фиг. 1 изображена электрическая схема предлагаемого устройства; на фиг. 2 изображена электрическая .схема видоизмененного устройства для включения источников высокоинтенсивного света в сеть неременного тока.Устройство для питания высокоинтенсивных источников света от сети переменного тока содержит газоразрядную лампу Л, включенную последовательно с питающей сетью во вторичную обмотку импульсного трансформатора ИТ, первичная обмотка которого подсоединена к этой же сети переменного тока через рабочий конденсатор Ср, и коммутатор, вынолненный в виде двух параллельных ветвей, каждая из которых состоит из соединенных между собой последовательно-согласно неуправляемого и управляемого вентилей (Д!/"! и MyTz), между общими точками которых включены два, соединенных между собой последовательно дополнительных конденсатора -(Ci и Сд), средняя точка которых подключена к выводу сети переменного тока.15Поставленная цель достигается тем, что коммутатор выполнен в виде двух встречно- параллельных цепей, каждая из которы.ч 20 имеет неуправляемый и управляемый вентили, включенные последовательно-согласно, причем неуправляемые вентили этих цепей подключены к одному из выводов сети переменного тока, управляемые — к рабочему 25 конденсатору, а между общими точками :управляемых и неуправляемых вентилей каждой из параллельных цепей включены два соединенных между собой последовательно дополнительных конденсатора, общая точка 30Питающая сеть защищена от высокого напряжения блокировочным конденсатором С б 1972
  • Изобрете В. Е. Баранов, В. С. Иванов, Г. Н. Квашин, Д. И. Панфилов
  • В. И. Ткин Б. В. Шипилов
SU427496A1
US 3471253 A1, 07.10.1969
БАРАБАННОЕ АВТОМАТИЧЕСКОЕ БУНКЕРНО- ЗАГРУЗОЧНОЕ УСТРОЙСТВО 1971
  • Изобретени М. И. Хаймов, В. С. Шаршов, А. А. Боровитченко В. В. Погорелое
SU432010A1
US 1953839 A, 03.04.1934.

RU 2 213 694 C1

Авторы

Анфалов Ю.А.

Ковырзин Ю.В.

Шестаков В.В.

Кобец Н.В.

Булкина Л.Л.

Контарева Л.Н.

Даты

2003-10-10Публикация

2002-03-11Подача