Изобретение относится к аналитической химии, в частности определению водорода в уране.
Известно, что наличие водорода в металлах отрицательно влияет на их механические свойства. Появляется водородная хрупкость. Поэтому проблема получения чистых по водороду металлов весьма актуальна, особенно в атомной и авиационной промышленности.
В основном все известные аналитические методы определения водорода в металлах предусматривают предварительную высокотемпературную экстракцию с целью отделения исследуемой компоненты с последующим количественным ее определением по теплопроводности, масс-спектрометрическим, спектральным, кулонометрическим или другими методами.
Известен способ определения водорода в металлах (Федоров Т.Г. Спектральный изотопный анализ водорода и определение концентрации водорода в металлах. - М.: Атомиздат, 1980, с. 64-87), заключающийся в нагревании образца исследуемого металла до высоких температур свыше 1100oС в вакууме.
Недостатком данного способа является высокая температура для разложения водородсодержащих соединений металлов.
Наиболее близким по технической сущности и достигаемому результату (прототип) является способ определения водорода в металлах методом вакуум-нагрева для определения водорода в металлах (ГОСТ 22720.0-77 - ГОСТ 22720.4-77 Редкие металлы и сплавы на их основе. Методы определения кислорода, водорода, азота и углерода. Издательство стандартов, 1978, с. 26, п. 4.5), заключающийся в разложении всех водородсодержащих соединений металлов в образце, помещенном в графитовый тигель вакуумной печи при температуре свыше 1200oС, выделившийся при этом в газовую фазу водород поступает в анализатор, где измеряется его давление в известном объеме.
Недостатком известного способа является высокая температура для разложения водородсодержащих соединений металлов и, следовательно, удорожание способа.
Задача изобретения - определение содержания водорода в металлах при более низких температурах (400-800oС).
Поставленная задача решается благодаря тому, что в способе определения водорода в металлах, включающем нагревание пробы с выделением водорода и определение его количества, согласно формуле изобретения нагревание пробы проводят в среде кислорода, выделившийся водород дожигают до воды и определяют его количество кулонометрическим датчиком, при этом нагревание проводят при 400-800oС.
Указанная совокупность признаков является новой и обладает изобретательским уровнем, так как нагревание пробы в среде кислорода обеспечивает интенсивное окисление исследуемых металлов и разложение гидридов металлов, при этом освобождается также окклюдированный и растворенный водород в металлах. Освободившийся растворенный, окклюдированный и гидридный водород дожигают до воды и замеряют интегрированием количества электричества, пошедшего на ее разложение в кулонометрическом датчике.
Предлагаемый способ реализуется на приборе, схематически изображенном на чертеже.
Прибор состоит из кварцевого испарителя 1, дожигателя водорода 2, сосуда Дьюара 3, змеевика 4, кулонометрического датчика 5 и интегратора 6.
Способ осуществляется следующим образом.
Перед проведением анализа через весь прибор пропускают инертный газ до установления стабильного показания тока электролиза в датчике 5. Пробу исследуемого металла помещают в кварцевой лодочке в кварцевый испаритель 1, где она омывается кислородом в течение 2 минут для удаления воды, сорбированной поверхностью пробы и кварцевой лодочкой. После продувки испарителя 1 пробу металла нагревают до 400-800oС в потоке кислорода. Анализируемый образец, окисляясь, превращается в мелкий порошок, при этом гидриды металла разлагаются. Растворенный и окклюдированный водород, а также освободившийся водород при разложении гидридов, потоком кислорода перемещают в дожигатель 2 водорода до воды. Образовавшаяся вода тем же потоком кислорода уносится в размещенный в сосуде Дьюара 3 змеевик 4, где конденсируется, а кислород, свободный от воды, сбрасывается в атмосферу. Затем вместо кислорода подают в систему газ-носитель (инертный газ), змеевик удаляют из сосуда Дьюара и пары воды потоком газа-носителя уносятся в кулонометрический датчик 5, где после поглощения гигроскопическим веществом, вода подвергается электролизу. Количество электричества, пошедшее на электролиз воды, регистрируется интегратором 6. По количеству электричества, пошедшего на электролиз воды, определяют массу водорода в металле.
Пример выполнения способа.
Три грамма металлического урана в виде стружки помещают в испаритель, в течение двух минут через всю систему установки пропускают кислород, который сбрасывается в атмосферу. В течение 10 минут проба нагревается при 700oС и, окисляясь, разрушается до мелкого порошка закиси-окиси урана. Освободившийся водород потоком кислорода переносится в дожигатель водорода до воды, которая тем же потоком кислорода перемещается в змеевик. По истечении десяти минут сосуд Дьюара снимается со змеевика (конденсатора) и вместо кислорода в систему подается инертный газ, который пары воды переносит в датчик, где вода электролизом разлагается. Интегратор тока регистрирует количество электричества, пошедшего на электролиз воды. Далее рассчитывается содержание водорода в пробе.
С помощью предложенного способа проанализирована серия проб урана с содержанием водорода от 1,6•10-4 до 4,0•10-4%. Суммарная погрешность определения водорода составила 0,48•10-5 - 0,5• 10-5%.
Таким образом, предложенный способ предварительного окисления исследуемого металла дает возможность проводить анализ водорода в металлах при относительно низких температурах, работать с укрупненными навесками, что обеспечит повышение чувствительности метода определения водорода, снижение погрешности анализа.
название | год | авторы | номер документа |
---|---|---|---|
АНАЛИЗАТОР ВОДОРОДА В ТОПЛИВНЫХ ТАБЛЕТКАХ ИЗ ДВУОКИСИ УРАНА | 1998 |
|
RU2151434C1 |
АНАЛИЗАТОР ВОДОРОДА В ТОПЛИВНЫХ ТАБЛЕТКАХ ИЗ ДВУОКИСИ УРАНА | 2001 |
|
RU2210820C2 |
УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ ВОДОРОДА В ТОПЛИВНЫХ ТАБЛЕТКАХ ИЗ ДВУОКИСИ УРАНА | 2003 |
|
RU2253915C2 |
АНАЛИЗАТОР ВЛАЖНОСТИ | 2002 |
|
RU2231048C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ВОДОРОДА В ТОПЛИВНЫХ ТАБЛЕТКАХ ИЗ ДВУОКИСИ УРАНА | 1999 |
|
RU2173486C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ СПЕЧЕННЫХ ТОПЛИВНЫХ ТАБЛЕТОК И ЛОДОЧКА ДЛЯ СПЕКАНИЯ | 2000 |
|
RU2181221C2 |
СПОСОБ ПОЛУЧЕНИЯ СИЛАНА | 2001 |
|
RU2194009C1 |
СПОСОБ И УСТАНОВКА ДЛЯ ОБОГАЩЕНИЯ ИЗОТОПА ЛИТИЯ-7 | 2001 |
|
RU2216391C2 |
СПОСОБ ПОЛУЧЕНИЯ ГАЗОВОГО ПОТОКА С ЗАДАННОЙ ВЛАЖНОСТЬЮ | 2003 |
|
RU2249239C2 |
СПОСОБ ПОЛУЧЕНИЯ ЛИТИЯ | 1997 |
|
RU2135615C1 |
Изобретение относится к аналитической химии, в частности определению водорода в металлах. Способ включает нагревание пробы с выделением водорода и определение его количества. Нагревание пробы проводят в среде кислорода. Выделившийся водород дожигают до воды и определяют его количество кулонометрическим датчиком. При этом нагревание проводят при 400-800oС. Технический результат: определение содержания водорода в металлах при более низких температурах. 1 з.п.ф-лы, 1 ил.
Воздухораспределитель в воздушно-электрических тормозах | 1929 |
|
SU22720A1 |
Методы определения кислорода, водорода, азота и углерода | |||
- М.: Издательство стандартов, 1978, с.26, п.4.5 | |||
АНАЛИЗАТОР ВОДОРОДА В ТОПЛИВНЫХ ТАБЛЕТКАХ ИЗ ДВУОКИСИ УРАНА | 1998 |
|
RU2151434C1 |
US 4567013 А, 28.01.1986 | |||
ФЕДОРОВ Т.Г | |||
Спектральный изотопный анализ водорода и определение концентрации водорода в металлах | |||
- М.: Атомиздат, 1980, с.64-87. |
Авторы
Даты
2003-11-20—Публикация
2001-08-14—Подача