Изобретение относится к металлургии, а именно к термоупрочняющей обработке литейных и деформируемых алюминиевых сплавов.
Известен способ термообработки деталей из алюминиевых сплавов, включающий операции нагрева до температуры фазовых превращений и последующего старения (Колобнев И. Ф. Термическая обработка алюминиевых сплавов. Изд. "Металлургия". М. 1966).
Данный способ позволяет получить удовлетворительный уровень требуемых стандартных свойств материала.
Недостатки известного способа заключаются в следующем:
- ограниченный уровень свойств материала, не соответствующий высоким требованиям современных технологий;
- нестабильность структуры материала и соответственно его основных свойств;
- длительность операций закалки и старения (до нескольких десятков часов);
- высокая энергоемкость термоупрочняющей обработки.
Ближайшим аналогом изобретения, принятым в качестве прототипа, является способ ультразвуковой обработки деталей при выполнении операций старения (Погодина-Алексеева К. М. , Эскин Д.И. Металловедение и обработка металлов. 1956 г., 1, с.45-46).
Недостаток прототипа заключается в его низкой эффективности, т.к. ультразвуковая обработка, проводимая в холодном состоянии, не может оказать сколько-нибудь значительного влияния на протекание диффузионных процессов и фазовых превращений материала, тем более на развитие механизмов пластической деформации.
Задачей изобретения является достижение максимального эффекта объемного деформационно-дисперсного упрочнения материала при сокращении длительности обработки и соответствующих энергетических затрат.
Решение поставленной задачи обеспечивается тем, что в способе термообработки деталей из алюминиевых сплавов, включающем операции закалки и искусственного старения при нормативных значениях температур, закалку и искусственное старение выполняют в условиях низкочастотного акустического воздействия с частотой 1600-6500 Гц, звуковом давлении 120-140 дб, мощности акустической 1,0-1,5 кВт и давлении сжатого воздуха 6,0-8,0 атм с выдержкой времени закалки 1 ч для литейных сплавов и 0,5 ч для деформируемых сплавов, а времени старения 2,0 ч для литейных сплавов и 4,0 ч для деформируемых сплавов.
Предлагаемое изобретение характеризуется тем, что операции закалки и искусственного старения выполняют в условиях низкочастотного акустического воздействия по схемам, представленным на фиг.1 (литейный алюминиевый сплав АЛ9) и фиг.2 (деформируемый алюминиевый сплав В-96). Указанные сплавы выбраны как наиболее широко применяемые в промышленности.
На фиг. 1 выдержка при реализации перехода "нагрев" операций закалки и старения составляет соответственно 1 и 2 ч, при этом скорость нагрева "вместе с печью"; охлаждение с температуры нагрева "под закалку" до температуры цеха в воде с температурой 30-40oС; охлаждение с температуры старения до температуры цеха на воздухе; допустимый перепад температур в рабочей зоне печи плюс-минус 1oС.
На фиг. 2 выдержка при реализации перехода "нагрев" операций закалки и старения составляет соответственно - 0,5 и 4 ч; скорость нагрева -"вместе с печью", охлаждение с температуры нагрева под закалку до температуры цеха - в воде с температурой 30-40oС; охлаждение с температуры старения до температуры цеха - на воздухе; допустимый перепад температур в рабочей зоне печи: плюс-минус 1oС.
Применяемые в приведенных схемах операции закалки и искусственного старения выполняют в условиях низкочастотных акустических воздействий с частотой - 1600-6500 Гц, звуковом давлении - 120-140 дб, мощности акустической - 1,0-1,5 кВт, давлении сжатого воздуха 6,0-8,0 атм, максимальная температура закалки для сплава АЛ-9 - 535oС, для сплава В-96 - 470oС, с выдержкой времени закалки 1 ч - для литейных сплавов и 0,5 ч - для деформируемых сплавов, а времени старения: 2 ч - для литейных сплавов и 4 ч - для деформируемых сплавов.
Физические механизмы низкочастотного термоакустического воздействия с использованием стержневых излучателей повышенной мощности приводят к возникновению в материалах с относительно низкой прочностью тепловых волн с отрицательной амплитудой на поверхности, глубина проникновения которых в материал достигает 0,3-0,45 мм, а уровень образующихся тепловых радиальных деформаций (при температурной модуляции 6Т ≅ 5oС) может достигать величин, близких Em≅4•10(-4--5).
В таблицах 1-4 приведены результаты испытаний по оценке технологических и механических характеристик сплавов АЛ9 и В96, обработанных по предлагаемому способу в сравнении с прототипом.
Полученные экспериментальные данные позволяют рекомендовать заявленное предложение в следующих процессах обработки алюминиевых сплавов: искусственное старение без предварительной закалки (Т1); отжиг (Т2); закалка (Т4); закалка с кратковременным старением (Т5); закалка и стабилизирующее старение (Т7,Т8).
При этом все временные и акустические режимы для всех перечисленных процессов должны быть как и для процесса Т6, выполняемому в условиях низкочастотного акустического воздействия с указанными выше характеристиками.
Низкочастотное акустическое воздействие может быть применено не в комплексе, а для каждой из вышеназванных операций в отдельности. Например, низкочастотное акустическое воздействие выполняют только при реализации процессов старения без предварительной закалки (Т1), отжига (Т2) и закалки (Т4).
Заявленное предложение по сравнению с известными техническими решениями повышает растворимость упрочняющих фаз в твердом растворе; скорость протекания диффузионных процессов и фазовых превращений; количество зон Гинье-Престона, способствуя интенсивному выделению ультрадисперсных частиц (упрочнителей) при распаде твердых растворов; прочностные и пластические характеристики на 30-35%; сокращает длительность обработки в 5-7 раз; расход электроэнергии - до 1500 кВт•ч на 1 процесс.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ МЕТАЛЛОКЕРАМИЧЕСКИХ ИЗДЕЛИЙ НА ОСНОВЕ МАТРИЧНЫХ БЫСТРОРЕЖУЩИХ СТАЛЕЙ | 2001 |
|
RU2185263C1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЛИТЫХ ИЗДЕЛИЙ ИЛИ ЗАГОТОВОК ИЗ СИЛУМИНА АК7 | 2008 |
|
RU2389821C2 |
Способ химико-термической обработки металлических изделий | 1990 |
|
SU1752826A1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ ДВУХФАЗНЫХ ТИТАНОВЫХ СПЛАВОВ | 2009 |
|
RU2417950C1 |
СПОСОБ ДЕФОРМАЦИОННО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ОБЪЕМНЫХ ПОЛУФАБРИКАТОВ ИЗ AL-CU-MG СПЛАВОВ | 2014 |
|
RU2571993C1 |
Способ изготовления изделий металлооптики | 1988 |
|
SU1602698A1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЯ ИЗ ДЕФОРМИРУЕМОГО СПЛАВА ВТ23 | 2013 |
|
RU2544322C1 |
Способ высокотемпературной пайки деталей из алюминиевых термоупрочняемых сплавов | 2017 |
|
RU2675326C1 |
Способ изготовления термомеханического актюатора для защиты электронного блока космического аппарата от перегрева и термомеханический актюатор, изготовленный по данному способу | 2023 |
|
RU2813613C1 |
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ЛИСТОВЫХ АЛЮМИНИЕВЫХ СПЛАВОВ | 1992 |
|
RU2042735C1 |
Изобретение относится к металлургии, а именно к термоупрочняющей обработке литейных и деформируемых алюминиевых сплавов. Данный способ включает закалку и искусственное старение в условиях низкочастотного акустического воздействия с частотой 1600-6500 Гц, звуковом давлении 120-140 дб, акустической мощности 1,0-1,5 кВт и давлении сжатого воздуха 6,0-8,0 атм. В частных воплощениях изобретения закалку для литейных сплавов проводят с выдержкой 1,0 ч, а искусственное старение с выдержкой 2,0 ч, для деформируемых сплавов закалку проводят с выдержкой 0,5 ч, а искусственное старение - с выдержкой 4,0 ч. Техническим результатом изобретения является достижение максимального эффекта объемного деформационно-дисперсного упрочнения материала при сокращении длительности обработки и соответствующих энергетических затрат. 2 з.п. ф-лы, 4 табл., 2 ил.
ПОГОДИНА-АЛЕКСЕЕВ К.М | |||
и др | |||
Влияние ультразвуковых колебаний на дисперсионное твердение и процессы при отпуске некоторых сплавов | |||
- Металловедение и обработка металлов, 1956, №1, с.42-43 | |||
КОЛОБНЕВ И.Ф | |||
Термическая обработка алюминиевых сплавов | |||
- М.: Металлургия, 1966, с.25, 27 | |||
Способ обработки металлов | 1980 |
|
SU945225A1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ЕГО ТЕРМИЧЕСКОЙ ОБРАБОТКИ | 1997 |
|
RU2126456C1 |
GB 432815, 02.08.1935. |
Авторы
Даты
2004-01-10—Публикация
2002-07-18—Подача