Изобретение относится к области химической технологии и может найти применение для очистки отходящих газов от сернистых соединений, таких как H2S, COS, CS2, монооксида углерода и органических соединений на предприятиях газоперерабатывающей, нефтеперерабатывающей, химической и других отраслей промышленности.
Процесс каталитического газофазного окисления сероводорода до серы и SO2 на известных катализаторах может протекать при температурах 100-300°С [Алхазов Т.Г., Амиргулян Н.С. Сернистые соединения природных газов и нефтей. - М.: Недра, 1989, 189 с.; Грунвальд В.Р. Технология газовой серы. М: Химия, 1992, 272 с.]. Однако при этих температурах не происходит окисления монооксида углерода и органических веществ. В присутствии соединений серы температура эффективной работы катализаторов окисления СО и органических веществ должна быть не ниже 450-500°С [Кундо Н.Н. Каталитическое дожигание выбросов, содержащих соединения серы, и перспективы его применения - Химия в интересах устойчивого развития, 1999, т.7, с.259-267.]
Известен способ очистки отходящих газов процесса Клауса, содержащих примеси H2S, COS, CS2, SO2, CO, в присутствии оксидного алюмомедно-хромового катализатора, содержащего, мас.%: 15-20 CuCr2O4, 5-7 CuO, 10-12 Сr2О3, остальное - Аl2О3. Способ осуществляют в температурном диапазоне 450-550°С при объемных скоростях 7000-18000 ч-1 [А.с. СССР 1583350, C 01 B 17/54, 1990]. Описанный способ принят по наибольшему количеству сходных с предлагаемыми признаков за прототип изобретения, а именно, способа дожигания отходящих газов производств получения и переработки серы.
Недостатком прототипа является необходимость нагревания смеси отходящих газов, имеющих температуру 130-150°С, до 450°С. Нагревание осуществляют за счет сжигания природного газа в газовых горелках, что требует большого расхода топливного газа для подогрева. Помимо большого расхода природного газа, при этом происходит вторичное загрязнение атмосферы монооксидом углерода и оксидами азота.
Изобретение решает задачу экономии топливного газа и снижения количества продуктов вторичного загрязнения атмосферы за счет снижения температуры нагревания отходящих газов до температуры 130-250°С.
Задача решается тем, что способ дожигания отходящих газов от сернистых соединений, монооксида углерода и органических веществ, включающий пропускание обрабатываемого газа и молекулярного кислород и/или воздуха через слой катализатора при повышенный температуре и объемной скорости 7000-18000 ч-1, осуществляют в две стадии с использованием, по крайне мере, двух слоев различных катализаторов. Соотношение объемной концентрации кислорода к объемной концентрации окисляемых реагентов не меньше стехиометрического значения.
На первой стадии при температуре 130-250°С осуществляют окисление сероводорода, при этом в качестве катализатора первой стадии используют катализатор окисления сероводорода кислородом. На этой стадии происходит окисление сероводорода и паров элементной серы до диоксида серы и происходит разогрев газовой смеси до температур, позволяющих на второй стадии использовать катализаторы дожигания монооксида углерода и органических веществ без дополнительного подогревания.
На второй стадии при температуре 450-550°С осуществляют окисление монооксида углерода и органических веществ, нагревание обрабатываемой газовой смеси до температуры 450-550°С осуществляют за счет тепла, которое выделяется в реакции окисления сероводорода на первой стадии процесса. В качестве катализатора второй стадии используют катализаторы окисления, устойчивые к действию диоксида серы.
В качестве катализаторов первой стадии можно применять промышленные катализаторы окисления сероводорода кислородом или катализаторы "защитного слоя", используемые в процессе Клауса. Это могут быть катализаторы на основе оксида ванадия (V) либо оксида железа (III), нанесенные на Аl2О3, TiO2, SiO2.
Катализаторами второй стадии могут быть катализаторы, устойчивые к действию диоксида серы, такие как хромиты переходных металлов либо нанесенные платиновые катализаторы. Платиновые катализаторы можно использовать только при проведении процесса дожигания по предлагаемому способу. В случае проведения процесса дожигания по способу-прототипу катализаторы, содержащие платину, будут дезактивироваться в присутствии сероводорода.
Способ осуществляют следующим образом.
Газ, содержащий Н2S, COS, CS2, CO, SO2, углеводороды CnHm и органические вещества, содержащие серу, смешивают с воздухом и/или кислородом таким образом, чтобы в полученной газовой смеси, названной здесь обрабатываемым газом, выдерживалось отношение объемной концентрации кислорода к объемным концентрациям реагентов (H2S, COS, CS2, СО, углеводороды CnHm, органические вещества, содержащие серу) не меньшее стехиометрического значения. Далее обрабатываемый газ направляют в каталитический реактор и при объемной скорости 7000-18000 ч-1 пропускают через слой катализатора окисления сероводорода, поддерживая в нем температуру 130-250°С. Уровень температуры в слое катализатора поддерживают известными методами. Так, при недостатке тепла в обрабатываемый газ добавляют горючее вещество или нагревают либо его, либо слой катализатора. В результате выделения тепла в реакции окисления сероводорода обрабатываемый газ разогревается и направляется на вторую стадию, проходит через второй слой катализатора дожигания СО и органических соединений, нагревая его. Температура разогрева определяется содержанием сероводорода в обрабатываемом газе. При содержании сероводорода в обрабатываемой смеси, достаточном для нагревания газовой смеси до 450°С, процесс дожигания на второй стадии протекает без дополнительного подогревания обрабатываемого газа. В случае, когда содержание сероводорода в газовой смеси недостаточно для разогревания смеси до температуры 450°С, применяют дополнительное подогревание обрабатываемого газа до этой температуры. В этих условиях обеспечивается высокая производительность процесса и экономия топливного газа.
Реакции окисления сероводорода и монооксида углерода кислородом проводят в проточном режиме с неподвижным слоем катализатора при атмосферном давлении на катализаторах фракции 0,4-0,8 мм при температуре 130-300°С, объемной скорости 7000-18000 ч-1, составе исходной газовой смеси, об.%: 0,5-3 H2S, 4-20 O2, 5 СО, 10 СО2, 20 Н2О, инертный газ - до баланса, соотношении объемной концентрации кислорода к объемным концентрациям реагентов (H2S, COS, CS2, CO), не меньшем стехиометрического значения, варьируя состав исходной газовой смеси, объемную скорость и температуру. Состав исходной и конечной газовой смесей анализируют хроматографически.
Эффективность предлагаемого способа оценивают по величинам конверсии сероводорода, селективности по диоксиду серы, адиабатического изменения температуры газовой смеси (ΔT), происходящего за счет выделения теплоты реакции, и количества сэкономленного тепла.
Термохимические расчеты были проведены для 1 моля газовой смеси следующим образом.
Тепловой эффект реакции окисления сероводорода до диоксида серы (1) рассчитывают по формулам (2)-(5) с использованием величин энтальпии образования и теплоемкости реагентов и продуктов реакции (1). Значения термодинамических характеристик приведены в табл. 1.
где ΣН
где ΔН
теплоемкости реагентов и продуктов реакции, рассчитанные по уравнению зависимости теплоемкости от температуры
Величины адиабатического разогрева рассчитывали по формулам (6) и (7)
где Q - количество теплоты, вносимое обрабатываемым газом, кДж, n - количество обрабатываемого газа, моль; Т - температура обрабатываемой смеси, К; Ср - теплоемкость обрабатываемой смеси, кДж/моль × град К.
Температуру газовой смеси после реакции окисления сероводорода T1 рассчитывали по формуле (8)
где Cp1, n1 - теплоемкость и количество молей газовой смеси, образующейся после реакции окисления сероводорода, соответственно.
Адиабатическое изменение температуры газовой смеси (ΔТ), происходящего за счет выделения теплоты реакции, рассчитывают по формуле (9):
где Т и T1 - температуры обрабатываемой газовой смеси до и после реакции окисления сероводорода, соответственно.
Количество сэкономленного тепла на 1 моль обрабатываемой смеси равно тепловому эффекту реакции окисления сероводорода ΔHtреак, кДж.
Конкретные условия реакции, величины конверсии сероводорода, селективности по диоксиду серы, адиабатическому изменению температуры газовой смеси (ΔТ) и количества сэкономленного тепла представлены в приведенных ниже примерах.
Пример 1. Газовую смесь состава, об.%: 2.7 Н2S, 10,0 O2, 5.0 СО, 0,5 СН4, 10,0 СO2, 20,0 Н2О, остальное N2, нагретую до 130°С, пропускают с объемной скоростью 18000 ч-1 через слой катализатора состава, мас.%: 5 V2O5 + 95 TiO2. Проводят реакцию окисления сероводорода. Далее смесь после реакции, имеющую температуру 548°С, без дополнительного нагревания пропускают с объемной скоростью 18000 ч-1 через слой катализатора ИКТ- 12-8 состава, мас.%: 15 CuCr2O4 + 5 CuO + 10 Сr2O3 + 70 Аl2О3. Проводят реакцию окисления СО. После реакции выделяется 4,95 об.% СO2, что составляет 99% от количества монооксида углерода, присутствующего в обрабатываемой смеси.
Показатели эффективности способа:
конверсия H2S - 100%,
селективность по диоксиду серы - 100%,
ΔТ - 418°С,
количество сэкономленного тепла – 15,56 кДж.
Пример 2. Газовую смесь состава, об.%: 2.2 H2S, 10,0 O2, 5.0 СО, 1.0 С3Н8, 10,0 CO2, 20,0 Н2О, остальное N2, нагретую до 130°С, пропускают с объемной скоростью 18000 ч-1 через слой катализатора состава, мас.%: 5 V2O5 + 95 Аl2О3. Проводит реакцию окисления сероводорода. Далее смесь после реакции, имеющую температуру 465°С, без дополнительного нагревания пропускают с объемной скоростью 18000 ч-1 через слой катализатора ИКТ- 12-8 состава, мас.%: 15 CuCr2O4 + 5 CuO + 10 Сr2O3 + 70 Аl2О3. Проводят реакцию окисления СО. После реакции выделяется 4.85 об.% CO2, что составляет 97% от количества монооксида углерода, присутствующего в обрабатываемой смеси.
Показатели эффективности способа:
конверсия H2S - 100%,
селективность по диоксиду серы - 100%,
ΔТ-335°С,
количества сэкономленного тепла - 10,37 кДж.
Пример 3. Газовую смесь состава, об.%: 1 Н2S, 10 O2, 5 СО, 10 СO2, 20 Н2O, остальное N2, нагретую до 200°С, пропускают с объемной скоростью 18000 ч-1 через слой катализатора состава, мас.%: 5 V2O5 + 30 Аl2О3 + 65 ТiO2. Проводят реакцию окисления сероводорода. Далее смесь после реакции, имеющую температуру 358°С, дополнительно нагревают до температуры 450°С и пропускают с объемной скоростью 18000 ч-1 через слой катализатора ИКТ- 12-8 состава, мас.%: 15 CuCr2O4 + 5 CuO + 10 Сr2O3 + 70 Аl2О3. Проводят реакцию окисления СО. После реакции выделяется 4.85 об.% CO2, что составляет 97% от количества монооксида углерода, присутствующего в обрабатываемой смеси.
Показатели эффективности способа:
конверсия H2S - 100%,
селективность по диоксиду серы - 100%,
ΔТ - 158°С,
количество сэкономленного тепла - 5,19 кДж.
Пример 4. Газовую смесь состава, об.%: 0,5 H2S, 10 O2, 5 СО, 10 CO2, 20 H2O, остальное N2, нагретую до 250°С, пропускают с объемной скоростью 18000 ч-1 через слой катализатора КУ-16 состава, мас.%: 25 Fе2О3 + 26 ZnO + 49 Сr2O3. Проводят реакцию окисления сероводорода. Далее смесь после реакции, имеющую температуру 336°С, дополнительно нагревают до температуры 450°С и пропускают с объемной скоростью 18000 ч-1 через слой катализатора ИКТ- 12-8 состава, мас.%: 15 CuCr2O4 + 5 CuO + 10 Сr2O3 + 70 Аl2O3. Проводят реакцию окисления СО. После реакции выделяется 4,85 об.% СO2, что составляет 97% от количества монооксида углерода, присутствующего в обрабатываемой смеси.
Показатели эффективности способа:
конверсия H2S - 100%,
селективность по диоксиду серы - 100%,
ΔТ - 86°С,
количество сэкономленного тепла - 2,60 кДж.
Пример 5. Газовую смесь состава, об.%: 3 H2S, 6 СО, 1 COS, 1.5 С3Н8, 15 СO2, 30 H2O, остальное N2 смешивают с воздухом в соотношении 1:2. Полученную газовую смесь состава, об.%: 1 H2S, 14 O2, 2 СО, 0,33 COS, 0,5 C3H8, 5 СO2, 10 Н2O, остальное N2,нагретую до 150°С, пропускают с объемной скоростью 18000 ч-1 через слой катализатора состава, мас.%: 5 V2O5 + 95 Аl2О3. Проводят реакцию окисления сероводорода. Далее смесь после реакции, имеющую температуру 310°С, дополнительно нагревают до температуры 450°С и пропускают с объемной скоростью 18000 ч-1 через слой катализатора ИКТ- 12-8 состава, мас.%: 15 CuCr2O4 + 5 CuO + 10 Сr2O3 + 70 Аl2О3. Проводят реакцию окисления СО, С3Н8, COS. Конверсия пропана и сероксида углерода составляет 100%, конверсия монооксида углерода составляет 97%.
Показатели эффективности способа:
конверсия H2S - 100%,
селективность по диоксиду серы - 100%,
ΔТ - 160°С,
количество сэкономленного тепла - 5,18 кДж.
Исходные условия и результаты экспериментов сведены в табл. 2.
Таким образом, как видно из примеров, предлагаемый способ позволяет снизить температуру зажигания процесса отходящих газов производств получения и переработки серы на 200-300°С с сохранением высокой степени конверсии реагентов и может найти широкое применение на предприятиях газовой, нефтеперерабатывающей, химической отраслях промышленности, а также на предприятиях цветной металлургии.
название | год | авторы | номер документа |
---|---|---|---|
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ОЧИСТКИ ГАЗОВЫХ ВЫБРОСОВ ОТ ДИОКСИДА СЕРЫ | 2008 |
|
RU2369436C1 |
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ОЧИСТКИ ГАЗОВЫХ ВЫБРОСОВ ОТ ДИОКСИДА СЕРЫ | 2008 |
|
RU2372986C1 |
КАТАЛИЗАТОР И СПОСОБ ВОССТАНОВЛЕНИЯ ДИОКСИДА СЕРЫ | 2008 |
|
RU2369435C1 |
Каталитическая композиция на основе оксидных соединений титана и алюминия и ее применение | 2021 |
|
RU2775472C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕТИЛМЕРКАПТАНА | 2004 |
|
RU2394023C2 |
СПОСОБ ПОЛУЧЕНИЯ СЕРЫ ИЗ ОТХОДЯЩИХ МЕТАЛЛУРГИЧЕСКИХ ГАЗОВ | 2016 |
|
RU2612481C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ СЕРНИСТЫХ СОЕДИНЕНИЙ ИЗ ГАЗА | 2000 |
|
RU2236894C2 |
СПОСОБ ОЧИСТКИ ГАЗОВ, ПОЛУЧЕННЫХ ИЗ УСТАНОВКИ ГАЗИФИКАЦИИ | 2006 |
|
RU2417825C2 |
КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ МЕТИЛМЕРКАПТАНА | 2008 |
|
RU2497588C2 |
СПОСОБ ГИДРООБРАБОТКИ УГЛЕВОДОРОДНОГО ТОПЛИВА | 2009 |
|
RU2517185C2 |
Изобретение относится к области химической технологии и может найти применение для очистки отходящих газов от сернистых соединений, монооксида углерода и органических соединений на предприятиях газовой, нефтеперерабатывающей, химической и других отраслей промышленности. Способ дожигания отходящих газов от сернистых соединений, монооксида углерода и органических веществ включает пропускание обрабатываемого газа и молекулярного кислорода и/или воздуха через слой катализатора при повышенной температуре и объемной скорости 7000-18000 ч-1. Процесс осуществляют в две стадии с использованием, по крайней мере, двух слоев различных катализаторов. На первой стадии при температуре 130-250°С осуществляют окисление сероводорода, а на второй стадии при температуре 450-550°С осуществляют окисление монооксида углерода и органических веществ. Изобретение позволяет снизить энергозатраты на проведение процесса. 2 табл.
Способ очистки газа от сероводорода | 1983 |
|
SU1214583A1 |
Способ получения элементарной серы | 1979 |
|
SU856974A1 |
Способ очистки отходящих газов,содержащих сернистые соединения от органических примесей | 1982 |
|
SU1102620A1 |
СПОСОБ ОБЕССЕРИВАНИЯ ГАЗА, СОДЕРЖАЩЕГО HS | 1996 |
|
RU2147918C1 |
WO 9726069 А1, 27.04.2000 | |||
CA 2055930 А, 09.01.1993. |
Авторы
Даты
2004-07-10—Публикация
2003-04-11—Подача