ЗВУКОПОГЛОЩАЮЩИЙ МАТЕРИАЛ И СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ НЕГО Российский патент 2004 года по МПК C04B28/34 E04B1/82 

Описание патента на изобретение RU2232148C1

Изобретение относится к области создания легковесных широкополосных звукопоглощающих и теплоизоляционных материалов, которые могут быть использованы в авиационной и автомобильной промышленности для защитных экранов двигателей и звукопоглощающих щитов автомобильных дорог для снижения шума на местности.

Проблема снижения шума в салонах пассажирских самолетов и на взлетной полосе аэродромов, а также автомобильных дорог является одной из актуальных задач в настоящее время.

Звукопоглощающие материалы, как правило, располагаются между несущими обшивками звукопоглощающей конструкции и могут быть распределены на три группы:

- сотовые материалы (сварные металлические, стекло- и полимеропластиковые) (Пат. СССР 1808583, Пат. США 3211253). Применение сот в качестве заполнителя таких конструкций обеспечивает достижение высоких акустических характеристик (коэффициент звукопоглощения а достигает 1,0), но полоса эффективного поглощения звуковых волн в этом случае (α≥0,8) не превышает ±250 Гц. Кроме того, применение металлических сварных сот приводит к увеличению массы конструкции;

- с целью расширения частотного диапазона сотовые заполнители сочетаются с различными рыхловолокнистыми материалами, тканями, неткаными материалами и другими пористыми слоями из стеклянных, углеродных, арамидных и металлических волокон (Пат. США 4235303, Пат. США №7300067). Однако длительные сроки эксплуатации рыхловолокнистых структур, особенно если они изготовлены из хрупких волокон (стеклянных, углеродных) и их сочетаний с жесткими металлическими волокнами, могут вызвать их разрушение под влиянием виброакустических нагрузок, уровни воздействия которых в рассматриваемых конструкциях весьма высоки. Кроме того, рыхловолокнистые структуры доступны для проникновения и конденсации влаги, а также пыли и рабочих жидкостей, что требует частой замены элементов, изготовленных из таких материалов;

- в последние годы разработаны "полужесткие" материалы с высокой пористостью и демпфирующими свойствами (Пат. Великобритании 1268777, Пат. США №2033264, Пат. Франции 2480741).

Однако их сочетание с гибкими слоями из сплетенных волокон нежелательно по вышеуказанным причинам. Кроме того, температурный диапазон эксплуатации подобных полимерных материалов ограничен.

Известные из уровня техники сварные металлические и стеклопластиковые сотовые панели имеют высокий коэффициент звукопоглощения, равный 0,8-1,0, но узкую полосу звукопоглощения ±250 Гц, большую массу, трудоемки в изготовлении, а также обладают сравнительно невысокой виброустойчивостью.

Наиболее близким по составу аналогом, взятым за прототип (AC CCCP 1281551), является теплоизоляционный звукопоглощающий материал, имеющий следующий состав, мас.%:

Полые корундовые микросферы 67-83

Фосфатное связующее 10-10,5

Полые микросферы из

натрийборосиликатного стекла 7-22,5

Способ получения этого материала включает следующие операции: дозировку компонентов, смешение корундовых и стеклянных микросфер с хромоалюмофосфатным связующим. Полученную композицию методом керамической технологии формуют в изделие. Сформованное изделие подвергают сушке при Т=80-100°С и последующему обжигу при Т=1220-1350°С.

Недостатком прототипа является низкое значение предела прочности при сжатии материала (15-20 кгс/см2), низкое значение коэффициента звукопоглощения, высокая температура формования (1220-1350°С).

Технической задачей изобретения является разработка звукопоглощающего материала, имеющего широкую полосу звукопоглощения, повышенную прочность при сжатии и снижение температуры формования.

Поставленная техническая задача достигается тем, что звукопоглощающий материал, включающий полые микросферы, фосфатное связующее, в качестве микросфер содержит полые зольные микросферы и дополнительно - микропорошок на основе электрокорунда, при следующем соотношении компонентов, мас.%:

Полые зольные микросферы 20-35

Фосфатное связующее 32,5-40

Mикропорошок на основе электрокорунда 32,5-40

Способ изготовления изделия из звукопоглощающего материала включает дозировку, смешение вышеуказанных компонентов и формование изделий, которое осуществляют при повышении температуры до Т=250-300°С.

Авторами установлено, что использование полых зольных микросфер в сочетании с фосфатным связующим и микропорошком в заявленных пределах обеспечивает получение материала с повышенной прочностью при сжатии, расширенной полосой звукопоглощения и низкой теплопроводностью при температуре формования Т=250-300°С. Повышение прочности материала достигается за счет увеличения объемной поверхности взаимодействия микропорошка с фосфатным связующим, а расширение полосы звукопоглощения - за счет структуры материала, которая формируется в процессе отверждения композиции.

Пример конкретного осуществления

Для приготовления звукопоглощающего материала используют полые зольные микросферы (ТУ 6-15-02-306-92) (зола уноса) в количестве 20 г и добавляют 40 г хромалюмофосфатного связующего (ТУ 92-04-04.016-91), или алюмофосфатного связующего (ТУ 1-596-162-82), или алюмоборфосфатного связующего и 40 г микропорошка на основе элетрокорунда (ГОСТ 28818-90), после дозировки хромоалюмофосфатное связующее смешивают с микропорошком в смесителе и в полученную массу вводят зольные микросферы. Перед смешиванием с микропорошком хромалюмофосфатное связующее разбавляют водой до плотности 1,35-1,5 г/см3, что позволяет облегчить смешивание компонентов. Полученную композицию заливают в форму и проводят отверждение с повышением температуры до Т=250-300°С.

Аналогично проводят изготовление материала при других соотношениях компонентов.

В таблице 1 приведены составы материалов, в таблице 2 - свойства предлагаемого материала и прототипа.

Из таблицы 2 видно, что предлагаемый состав имеет предел прочности при сжатии в 4 раз выше, обеспечивает расширение полосы звукопоглощения в 8 раз (до 4 кГц), а теплопроводность в 2 раза ниже по сравнению с прототипом, температура формования его составляет 250-300°С.

При получении материала исключается высокотемпературный обжиг при Т=1200-1350°С, что способствует снижению трудоемкости и себестоимости изделия.

Похожие патенты RU2232148C1

название год авторы номер документа
ЗВУКОПОГЛОЩАЮЩИЙ МАТЕРИАЛ И СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ НЕГО 2002
  • Гримайловская Т.П.
  • Сурнин Е.Г.
  • Кондрашов Э.К.
  • Каблов Е.Н.
RU2213072C1
ЗВУКОПОГЛОЩАЮЩИЙ БЕТОН 2019
  • Смирнова Ольга Михайловна
  • Черенько Александр Владимирович
  • Шибанов Михаил Дмитриевич
RU2708776C1
Композиционный материал из углеткани и фосфатного связующего и способ его получения 2023
  • Андрианова Кристина Александровна
  • Амирова Лилия Миниахмедовна
  • Гайфутдинов Амир Марсович
  • Таишев Булат Рустамович
RU2808804C1
СЛОИСТЫЙ АКУСТИЧЕСКИЙ МАТЕРИАЛ 2005
  • Гримайловская Татьяна Петровна
  • Каблов Евгений Николаевич
  • Нестерова Татьяна Александровна
  • Фоменкова Галина Николаевна
  • Бычкова Ирина Ивановна
RU2297916C1
Высокотермостойкий радиопрозрачный неорганический стеклопластик и способ его получения 2015
  • Бородай Феодосий Яковлевич
  • Неповинных Любовь Константиновна
  • Степанов Петр Александрович
RU2610048C2
Шихта для изготовления легковесного теплоизоляционного материала 1985
  • Иванов Альберт Боневич
  • Гиршович Ольга Игоревна
  • Боровецкая Алевтина Ивановна
  • Абрамов Виктор Михайлович
SU1281551A1
ПОРИСТОЕ ЗВУКОПОГЛОЩАЮЩЕЕ КЕРАМИЧЕСКОЕ ИЗДЕЛИЕ И СПОСОБ ЕГО ПРОИЗВОДСТВА (ВАРИАНТЫ) 2001
  • Ода Казуо
  • Ода Норихо
  • Мияо Нобуаки
RU2277075C2
Звукопоглощаюший материал для звукопоглощающих экранов грузового автомобиля с пониженной горючестью 2022
  • Алексеев Олег Николаевич
  • Хазиев Алмаз Рамзилевич
  • Шафигуллин Ленар Нургалеевич
RU2800220C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕРМОСТОЙКОГО РАДИОПРОЗРАЧНОГО МАТЕРИАЛА (ИЗДЕЛИЯ) НА ОСНОВЕ ФОСФАТНОГО СВЯЗУЮЩЕГО И КВАРЦЕВОЙ ТКАНИ 2015
  • Бородай Феодосий Яковлевич
  • Неповинных Любовь Константиновна
  • Степанов Петр Александрович
  • Ролецкая Надежда Александровна
  • Шуткина Ольга Владимировна
RU2596619C1
СПОСОБ ПОЛУЧЕНИЯ УПРУГОГО И ЗВУКОПОГЛОЩАЮЩЕГО ПОЛИМЕРНОГО МАТЕРИАЛА С ТЕРМОПЛАСТИЧНЫМИ МИКРОСФЕРАМИ 2013
  • Машошин Андрей Иванович
  • Батанов Андрей Константинович
  • Бродский Борис Моисеевич
  • Батанов Кирилл Андреевич
  • Куц Дарья Алексеевна
RU2534240C1

Реферат патента 2004 года ЗВУКОПОГЛОЩАЮЩИЙ МАТЕРИАЛ И СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ НЕГО

Изобретение относится к области создания легковесных широкополосных звукопоглощающих и теплоизоляционных материалов, которые могут быть использованы в авиационной и автомобильной промышленности для защитных экранов двигателей и звукопоглощающих щитов автомобильных дорог для снижения шума на местности. Технический результат - разработка звукопоглощающего материала, имеющего широкую полосу звукопоглощения, повышенную прочность при сжатии и снижение температуры формования. Звукопоглощающий материал, включающий полые микросферы, фосфатное связующее, в качестве указанных микросфер содержит полые зольные микросферы и дополнительно микропорошок на основе электрокорунда при следующем соотношении компонентов, мас.%: зольные микросферы - 20-35; фосфатное связующее - 32,5-40; микропорошок на основе электрокорунда - 32,5-40. Способ изготовления изделия из указанного состава звукопоглощающего материала включает следующие операции: дозировка, смешение вышеуказанных компонентов и формование изделий при повышении температуры до Т=250-300°С. 2 с.п.ф-лы, 2 табл.

Формула изобретения RU 2 232 148 C1

1. Звукопоглощающий материал, включающий полые микросферы и фосфатное связующее, отличающийся тем, что он дополнительно содержит микропорошок на основе электрокорунда, а в качестве полых микросфер используют зольные микросферы при соотношении компонентов, мас.%:

Зольные микросферы 20-35

Фосфатное связующее 32,5-40

Микропорошок на основе электрокорунда 32,5-40

2. Способ изготовления изделия из звукопоглощающего материала, включающий дозировку, смешение исходных компонентов и формование изделия, отличающийся тем, что производят дозировку и смешение компонентов звукопоглощающего материала по п.1, а формование изделия проводят при повышении температуры до Т=250-300°С.

Документы, цитированные в отчете о поиске Патент 2004 года RU2232148C1

Огнеупорная масса для изготовления теплоизоляционных изделий 1983
  • Рутман Д.С.
  • Пермикина Н.М.
  • Евдокимова З.У.
  • Кутуков В.Ф.
  • Белогрудов А.Г.
  • Исакова Е.И.
SU1128537A1
Шихта для изготовления легковесных огнеупоров 1981
  • Рыков Леонид Васильевич
  • Коршунов Виктор Сафронович
  • Эпштейн Абрам Семенович
  • Рублевский Иван Петрович
  • Мельников Евгений Васильевич
  • Морозов Борис Александрович
SU1025702A1
Шихта для изготовления легковесного теплоизоляционного материала 1985
  • Иванов Альберт Боневич
  • Гиршович Ольга Игоревна
  • Боровецкая Алевтина Ивановна
  • Абрамов Виктор Михайлович
SU1281551A1
Устройство для возбуждения сейсмических колебаний 1986
  • Гладилович Яков Григорьевич
SU1448320A1
СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ ЗАДЕРЖКИ ПОЛОВОГО РАЗВИТИЯ У ДЕВОЧЕК ПРЕПУБЕРТАТНОГО И ПОДРОСТКОВОГО ВОЗРАСТА 2003
  • Кондратьева Н.М.
  • Завадовская В.Д.
  • Кравец Е.Б.
  • Горбатенко Е.В.
  • Стрелис Л.С.
RU2264789C2
Способ смешанной растительной и животной проклейки бумаги 1922
  • Иванов Н.Д.
SU49A1

RU 2 232 148 C1

Авторы

Каблов Е.Н.

Сурнин Е.Г.

Гримайловская Т.П.

Пономарева Е.А.

Рязанцева Т.С.

Даты

2004-07-10Публикация

2002-12-25Подача