СПОСОБ РЕГЕНЕРАЦИИ КАТАЛИЗАТОРА ДЛЯ ПОЛУЧЕНИЯ ИЗОПРЕНА ИЗ 4,4-ДИМЕТИЛ-1,3-ДИОКСАНА Российский патент 2004 года по МПК B01J38/02 B01J38/06 B01J38/12 B01J38/20 

Описание патента на изобретение RU2235592C1

Изобретение относится к способам регенерации катализаторов, в частности кальцийфосфатных, для получения изопрена из 4,4-диметил-1,3-диоксана и может быть использовано в нефтехимической промышленности.

В ходе контактного разложения 4,4-диметил-1,3-диоксана катализатор за счет протекания вторичных реакций, в основном за счет взаимодействия изопрена с формальдегидом, покрывается коксом, который в действительности является высокомолекулярным органическим продуктом, что приводит к блокированию активных центров. Поэтому периодически через каждые 2-4 часа работы катализатора требуется его регенерация.

Известны способы регенерации катализаторов для получения изопрена, представляющие собой выжиг углистых отложений смесью азота с воздухом на различных носителях, пропитанных фосфорной кислотой при температуре 400-600°С, или путем повторного нанесения фосфорной кислоты на катализатор и его прокаливанием при 750-1050°С (Патент 1092902 США, 1966, Патент 343314 Япония, 1974).

Недостатком указанных способов является значительный расход фосфорной кислоты, необходимость ведения процесса регенерации при очень высокой температуре.

Наиболее близким по технической сущности является способ, согласно которому регенерация катализатора для получения изопрена из 4,4-диметил-1,3-диоксана проводится путем выжига кокса и смол паровоздушной смесью периодически (процесс контактирования 3 часа, регенерация 3 часа) в реакторах, которых для непрерывной работы промышленной установки должно быть не менее 2. Температура регенерации должна быть около 500°С, так как иначе - большие потери катализатора при прокаливании (Огородников С.К., Идлис Г.С. Производство изопрена. - Л.: Химия. 1973 г., с. 59).

Как правило, в крупнотоннажном промышленном производстве имеются две спаренные параллельно работающие системы реакторов. На практике температура регенерации катализатора поддерживается 400-550°С.

Недостатком способа является большой расход водяного пара и значительные выбросы в атмосферу газов регенерации.

Задача настоящего изобретения - снижение удельного расхода водяного пара и улучшение экологии.

Поставленная задача решается способом, согласно которому регенерация катализатора для получения изопрена из 4,4-диметил-1,3-диоксана проводится путем выжига кокса и смол при температуре 400-450°С паровоздушной смесью периодически в спаренных, параллельно работающих на контактировании реакторах (т.е. при контактировании ДМД с катализатором получают изопрен), которые при регенерации включают последовательно и регенерация катализатора в первом по ходу реакторе проходит при давлении 2,2-2,8 ати, затем газы регенерации охлаждают до 380-450°С в узле регулирования температуры газов регенерации и направляют полностью или частично во второй по ходу реактор, работающий под давлением 0,9-1,1 ати, и далее в атмосферу.

При этом следует учесть, что регенерация катализатора при повышенном давлении, как это предусмотрено данным изобретением, проходит более эффективно, а условия при регенерации во втором реакторе более предпочтительны из-за пониженного по сравнению с первым реактором содержанием кислорода в газе регенерации, выходящем из первого реактора.

Таким образом, данное изобретение предполагает повторное использование газов регенерации, т.е. экономию водяного пара и снижение газовых выбросов в атмосферу, в т.ч. и углеводородов.

В первые минуты регенерации происходит повышение температуры в слоях катализатора вплоть до предельной - 550°С. Для предотвращения дальнейшего повышения температуры в реакторе подается низкотемпературный пар (температура 145°С). общая подача пара при этом достигает 2,5 т/т катализатора, затем через несколько минут регенерации она стабилизируется на уровне 2 т/т катализатора. К концу регенерации по мере выжига кокса и смол имеется возможность снижения удельного расхода пара до 1,5 т/т катализатора. При работе двух спаренных реакторов на регенерацию в промышленных условиях тратится около 25 т/ч водяного пара и до 4000 м3/ч воздуха.

Газы регенерации на выходе из первого по ходу реактора имеют температуру 400-550°С. Для их охлаждения до 380-450°С предусматривается узел регулирования температуры газов регенерации с помощью впрыска парового конденсата или же установкой теплообменника с получением горячей воды или котла-утилизатора с получением водяного пара.

На чертеже представлена принципиальная схема предлагаемого изобретения.

По данному способу на регенерацию сначала по линии 1 в реактор 2 на каждую из секций катализатора подается перегретый до 400°С водяной пар и производится продувка катализатора от углеводородов, а затем по линии 8 подают воздух. Для регулирования температуры до 400-550°С в слоях катализатора предусмотрена периодическая подача низкотемпературного пара по линии 9.

Газы регенерации на выходе из реактора 2 по линии 3 направляются на узел регулирования температуры газов регенерации 4, где происходит их охлаждение до 380-450°С и который может быть выполнен в виде котла-утилизатора с получением водяного пара или теплообменника с получением горячей воды. Простым решением этой задачи является впрыск парового конденсата.

Давление в первом реакторе, равное 2,2-2,8 ати, поддерживается задвижкой 6, установленной по линии 5. Частично газы регенерации из первого по ходу реактора могут сбрасываться по линии 7 и далее по линиям 14, 15 в атмосферу. Регулирование количества газов осуществляется задвижкой 13.

Полностью или частично газы регенерации из первого по ходу реактора 2 через узел регулирования температуры газов регенерации 4 направляют по линии 10 во второй реактор 11, работающий под давлением 0,9-1,1 ати.

Газы регенерации катализатора, представляющие собой смесь водяного пара, непрореагировавшего кислорода, азота и проскочившие с ними углеводородные соединения в количестве до 0,001 мг/м3 на выходе из второго реактора 10 по линиям 12 и 15 сбрасываются в атмосферу. Предусматриваются варианты замены мест реакторов.

Изобретение иллюстрируется следующими примерами.

Пример 1 (по прототипу). Регенерация катализатора КФ-83 для получения изопрена из 4,4-диметил-1,3-диоксана производится выжигом кокса и смол паровоздушной смесью при температуре 400-550°С и атмосферном давлении.

Количество водяного пара, подаваемого на регенерацию, составляет 2 т на 1 т катализатора или для двух спаренных реакторов - 25 т/ч.

Количество воздуха при этом составляет в среднем 2000 м3/ч. Кроме того, для регулирования температуры в слоях катализатора предусмотрена подача низкотемпературного пара. Газы регенерации, содержащие водяной пар, непрореагировавший кислород, азот и проскочившие углеводороды в количестве до 0,001 мг/м3 сбрасываются в атмосферу.

Пример 2 (по предлагаемому способу)

На регенерацию катализатора КФ-83 для получения изопрена из 4,4-диметил-1,3-диоксана спаренные параллельно реакторы включаются последовательно и газы регенерации из первого по ходу реактора, в котором в зависимости от срока эксплуатации катализатора выдерживают давление 2,2-2,8 ати и температуру 400-550°С, через узел регулирования температуры газов регенерации до 380-450°С направляют во второй реактор, работающий под давлением 0,9-1,1 ати.

Количество водяного пара, подаваемого на первый реактор, составляет 1,5 т/т катализатора, количество воздуха - до 1500 м3/час. Половина газов регенерации после 1-го реактора сбрасывается в атмосферу, а вторая половина поступает во второй реактор.

Пример 3. Регенерация катализатора КФ-83 проводится по схеме (и при давлении в реакторах), описанной в примере №2, за тем исключением, что весь газ регенерации направляется из первого реактора через узел регулирования температуры газов регенерации до 380-450°С во второй. Общий расход водяного пара при этом составляет 1,0 т/т катализатора, воздуха - до 1200 м3/час.

Для регулирования температуры газов регенерации перед II реактором предусматривается, например, впрыск парового конденсата в камеру, установленную в трубопроводе на входе во второй реактор. Количество газов регенерации, выбрасываемых в атмосферу, снижается в 2 раза.

Основные показатели процесса регенерации катализатора по сравнению с прототипом приводятся в таблице.

Таким образом, внедрение предлагаемого изобретения позволит снизить удельный расход пара при частичном использовании газов регенерации во втором реакторе в 1,5 раза, а при полном использовании - в 2 раза. Экономия водяного пара при этом от работы двух спаренных систем составит 80-100 тыс. т в год.

Соответственно, в 1,5-2 раза снизятся и выбросы газов регенерации, содержащие, помимо пара, азота и непрореагировавшего кислорода, также проскочившие углеводороды.

Похожие патенты RU2235592C1

название год авторы номер документа
СПОСОБ РЕГЕНЕРАЦИИ КАТАЛИЗАТОРА ДЛЯ ПОЛУЧЕНИЯ ИЗОПРЕНА ИЗ 4,4-ДИМЕТИЛ-1,3-ДИОКСАНА 2010
  • Коваленко Владимир Васильевич
RU2446884C1
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА, ИЗОБУТИЛЕНА И ФОРМАЛЬДЕГИДА 2003
  • Коваленко В.В.
  • Федотов Ю.И.
  • Тараканов А.А.
  • Шабельский В.М.
  • Башкирцев В.М.
  • Радионов В.А.
  • Бойцов Ю.В.
  • Тульчинский Э.А.
  • Золотарев В.Л.
RU2238259C1
Способ управления циклическим процессом получения изопрена 1981
  • Кипер Александр Израйлевич
  • Подольский Тадей-Иосиф Станиславович
  • Горелик Наум Григорьевич
  • Шербань Георгий Трофимович
  • Баталин Олег Ефимович
  • Белгородский Израиль Маркович
  • Тульчинский Эдуард Аврамович
  • Невструев Владимир Иванович
  • Родионов Валерий Андреевич
SU1028655A1
Способ переработки побочных продуктов синтеза 4,4-диметил-1,3-диоксана 2019
RU2712964C1
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА, ИЗОБУТИЛЕНА И ФОРМАЛЬДЕГИДА 2010
  • Коваленко Владимир Васильевич
RU2436756C1
Способ совместного получения изопрена и метилдигидропирана 1981
  • Баталин Олег Ефимович
  • Дыкман Аркадий Самуилович
  • Левина Нелли Семеновна
  • Белгородский Израиль Маркович
  • Абрамов Николай Вартанович
  • Тульчинский Эдуард Авраамович
  • Невструев Владимир Иванович
  • Радионов Валерий Андреевич
  • Головко Людмила Васильевна
  • Скачкова Нина Андреевна
SU1188157A1
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНОВОГО КАУЧУКА 2003
  • Щербань Г.Т.
  • Федотов Ю.И.
  • Башкирцев В.М.
  • Жданов И.Л.
  • Тараканов А.А.
  • Заяц А.И.
  • Барышникова Н.А.
RU2255096C2
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА 2004
  • Воробьёв О.Л.
  • Синицын А.В.
RU2255929C1
СПОСОБ ВОССТАНОВЛЕНИЯ АКТИВНОСТИ КАТАЛИЗАТОРОВ ГИДРОГЕНИЗАЦИОННЫХ ПРОЦЕССОВ 2008
  • Смирнов Владимир Константинович
  • Ирисова Капитолина Николаевна
  • Талисман Елена Львовна
RU2358805C1
СПОСОБ РЕГЕНЕРАЦИИ КАТАЛИЗАТОРА ДЕГИДРАТАЦИИ МЕТИЛФЕНИЛКАРБИНОЛА 1991
  • Коваленко В.В.
  • Нефедов Е.С.
  • Серебряков Б.Р.
  • Белокуров В.А.
  • Васильев И.М.
  • Ефремова В.П.
  • Мельников Г.Н.
  • Двинянинов Е.Д.
RU2019289C1

Реферат патента 2004 года СПОСОБ РЕГЕНЕРАЦИИ КАТАЛИЗАТОРА ДЛЯ ПОЛУЧЕНИЯ ИЗОПРЕНА ИЗ 4,4-ДИМЕТИЛ-1,3-ДИОКСАНА

Изобретение относится к способам регенерации катализаторов, в частности кальцийфосфатных, и может быть использовано в нефтехимической промышленности для производства изопрена. Описан способ, согласно которому регенерация катализатора для получения изопрена из 4,4-диметил-1,3-диоксана проводится путем выжига кокса и смол при температуре 400-550°С паровоздушной смесью периодически в спаренных, параллельно работающих на контактировании реакторах, которые при регенерации включают последовательно, и регенерация катализатора в первом по ходу реакторе проходит при давлении 2,2-2,8 ати, затем газы регенерации охлаждают до 380-450°С в узле регулирования температуры газов регенерации и направляют полностью или частично во второй по ходу реактор, работающий под давлением 0,9-1,1 ати и далее в атмосферу. Технический результат: способ позволяет проводить регенерацию катализаторов со снижением удельного расхода водяного пара. 1 табл., 1 ил.

Формула изобретения RU 2 235 592 C1

Способ регенерации катализатора для получения изопрена из 4,4-диметил-1,3-диоксана путем выжига кокса и смол при температуре 400-550°С паровоздушной смесью периодически в спаренных параллельно работающих на контактировании реакторах, отличающийся тем, что при регенерации катализатора реакторы включают последовательно и в первом по ходу реакторе регенерация проходит при давлении 2,2-2,8 ати, затем газы регенерации охлаждают до 380-450°С в узле регулирования температуры газов регенерации и направляют полностью или частично во второй по ходу реактор, работающий под давлением 0,9-1,1 ати, и далее в атмосферу.

Документы, цитированные в отчете о поиске Патент 2004 года RU2235592C1

SU 1405154 A1, 20.12.1996
US 5315056 A1, 24.05.1994.

RU 2 235 592 C1

Авторы

Коваленко В.В.

Федотов Ю.И.

Золотарёв В.Л.

Тараканов А.А.

Башкирцев В.М.

Радионов В.А.

Бойцов Ю.В.

Даты

2004-09-10Публикация

2002-12-06Подача