ДЕТЕКТОР ИЗЛУЧЕНИЯ, ВЫПОЛНЕННЫЙ ИЗ АЛМАЗА Российский патент 2004 года по МПК G01T1/24 H01L31/115 

Описание патента на изобретение RU2237912C2

Это изобретение относится к детектору излучения. Алмаз может быть использован таким образом, что при воздействии на него излучением, которое проникает в алмаз лишь на незначительное расстояние (например, на расстояние менее 10 микрометров (мкм)), например альфа-частицами и электромагнитным излучением с длиной волны меньше, чем приблизительно 220 нанометров (нм), например ультрафиолетовым и мягким рентгеновским излучением, получают отклик в виде электрического сигнала. Существующие детекторы, выполненные из алмаза, посредством которых осуществляют регистрацию такого излучения, содержат в себе тонкий слой алмаза, полученного непосредственно после его выращивания, который обычно имеет толщину приблизительно 1-200 мкм, а также отдельную и не содержащую в себе алмаз подложку, например кремниевую подложку. Находящаяся в тонком слое поверхность роста кристалла, как правило, имеет узорчатую конфигурацию, представляющую собой матрицу электродов с встречно-гребенчатой структурой.

Алмаз представляет собой полупроводник с большой шириной запрещенной зоны, и при комнатной температуре, и при обычных условиях он является диэлектриком. Для создания электрической проводимости чистого алмаза электроны необходимо перевести из валентной зоны, которая в обычных условиях является заполненной, в зону проводимости, которая в обычных условиях является пустой, что приводит к образованию электронно-дырочных (e-h) пар; это происходит при попадании на алмаз излучения, например гамма-излучения, рентгеновского излучения, ультрафиолетового светового излучения, альфа-частиц и бета-частиц. Приложение к алмазу электрического поля вызывает движение носителей заряда, что приводит к протеканию тока, а именно фототока. Величина фототока для конкретного алмаза зависит от типа и интенсивности излучения, а его протекание будет продолжаться до тех пор, пока не произойдет рекомбинация электронно-дырочных пар.

Сбор носителей заряда, сформированных излучением, обычно осуществляют посредством встречно-гребенчатой матрицы электродов, находящейся на поверхности роста кристалла, имеющейся в слое.

В патенте США №5216249 описан детектор нейтронов, содержащий в себе слой, состоящий из вещества, представляющего собой поликристаллический алмаз, нанесенный посредством процесса химического осаждения из газовой фазы, причем вещество, представляющее собой поликристаллический алмаз, содержит в себе достаточное количество бора-10 (10В) в качестве легирующей примеси, обеспечивающее достижение оптимальных параметров регистрации нейтронов посредством детектора.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В настоящем изобретении предложен детектор излучения, в частности такого излучения, как гамма-излучение, рентгеновское излучение, ультрафиолетовое световое излучение, альфа-частицы и бета-частицы, содержащий в себе дополнительный слой алмаза, выращенный на поверхности подложки из алмаза, легированного бором.

Подложка выполнена из алмаза, легированного бором, и, по существу, может быть поликристаллической или монокристаллической. Алмаз может представлять собой природный или синтетический алмаз, в котором легирование бором осуществляют посредством ионной имплантации, осуществляемой путем его введения в капсулу роста в процессе синтеза при высоком давлении/высокотемпературного синтеза, или может быть легирован естественным способом. Алмаз может быть также получен посредством химического осаждения из газовой фазы (ХОГФ) (CVD), причем в этом случае легирование бором обычно осуществляют в процессе синтеза алмаза. Атомы бора могут замещать собой атомы кристаллической решетки алмаза или быть внедрены между ее узлами. Концентрация бора в алмазе, легированном бором, обычно принимает значения в интервале от 1017 до 1021 атомов бора на кубический сантиметр (см3).

Подложка из алмаза, легированного бором, обычно имеет толщину от 0,1 до 2 миллиметров (мм).

Детектор излучения имеет дополнительный слой алмаза, который создают путем эпитаксиального выращивания его на поверхности подложки алмаза, легированного бором. Зернистость дополнительного слоя алмаза, выращенного поверх подложки, сравнима с зернистостью самой подложки.

Таким образом, если подложка из алмаза, легированного бором, имеет размер зерен кристаллов от 20 до 50 мкм, то размер зерен в созданном поверх нее дополнительном слое алмаза будет также составлять от 20 до 50 мкм. Дополнительный слой алмаза обычно выполняют таким образом, чтобы его толщина принимала значения в интервале от 1 до 500 мкм, а в предпочтительном варианте - в интервале от 3 до 50 мкм.

Выращенный поверх подложки алмаз может также сохранять в себе некоторые кристаллические свойства подложки и, следовательно, например, иметь большую зернистость, чем слой той же самой толщины, выращенный на подложке, выполненной не из алмаза.

Выращивание слоя алмаза поверх подложки в предпочтительном варианте осуществляют посредством ХОГФ. Способы осаждения алмаза на подложке посредством ХОГФ являются в настоящее время широко используемыми, а их многочисленные описания приведены в патентной и другой литературе. Согласно этому способу в месте осаждения алмаза на подложку обычно создают газовую смесь, которая при диссоциации может создавать водород или галоген (например, фтор (F), хлор (Сl)) в виде атомов и углерод (С), содержащую в себе радикалы и другие химически активные частицы, например СНх, CFx, где х может принимать значения от 1 до 4. Кроме того, она может содержать в себе вещества - источники кислорода, а также вещества - источники азота и бора. Многие процессы также осуществляют с использованием инертных газов, например гелия, неона или аргона. Следовательно, типичная исходная газовая смесь содержит в себе углеводороды типа СхНy, где каждый из индексов х и y может принимать значения от 1 до 10, галогенуглеводороды типа СхYyГалогенz, где каждый из индексов х, y и z может принимать значения от 1 до 10, и, возможно, одно или большее количество следующих веществ: СО, СO2, О2, Н2, N2, NН3, В2Н6, а также инертный газ. Каждый газ может присутствовать в его природном изотопном составе или может быть осуществлено искусственное управление их относительным изотопным составом; например, водород может присутствовать в виде дейтерия или трития, а углерод может присутствовать в виде изотопов 12C или 13С. Диссоциацию исходной газовой смеси осуществляют посредством источника энергии, например источника СВЧ (сверхвысокочастотного) излучения, лазеров, энергии ВЧ (высокочастотного) излучения, пламени или горячей нити, а полученные таким способом химически активные частицы в газе могут осаждаться на подложку и создавать алмаз.

В одном из предпочтительных вариантов осуществления изобретения поверхность, на которой выращивают дополнительный слой алмаза посредством ХОГФ, представляет собой полированную поверхность. Указанная поверхность может быть отполирована до такой степени, чтобы она имела низкую шероховатость, например, чтобы значение RA (или среднее значение линии между центрами) было меньше 30 нм. При использовании такой полированной поверхности дополнительный слой будет иметь намного более низкую шероховатость после его выращивания, чем слой, выращенный на шероховатой поверхности.

Детектор излучения при его использовании обычно содержит в себе первый электрический контакт, нанесенный на дополнительный слой, и второй электрический контакт, нанесенный на подложку или находящийся в электрическом контакте с ней.

Кроме того, в изобретении предложен способ регистрации или измерения излучения, включающий следующие этапы: обеспечивают детектор излучения вышеописанного типа; и поверхность дополнительного слоя алмаза подвергают воздействию излучения.

На чертеже представлена схема варианта осуществления детектора излучения согласно настоящему изобретению.

ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Теперь будет приведено описание варианта осуществления настоящего изобретения со ссылкой на приложенный чертеж, на котором показана схема детектора излучения. Со ссылкой на этот чертеж подложка 10 алмаза, легированного бором, сформированного посредством ХОГФ, имеет созданный поверх нее тонкий высококачественный дополнительный слой 12 из алмаза, сформированного на поверхности 14 подложки 10 посредством эпитаксиального выращивания с использованием ХОГФ. Поверхность 14 может представлять собой полированную поверхность. Концентрация бора в подложке 10 обычно принимает значения в интервале от 1017-1021 атомов бора на кубический сантиметр (см3). Зернистость дополнительного слоя 12 сравнима с зернистостью подложки.

Верхняя поверхность 16 слоя 12 снабжена матрицей 18 электродов, имеющих встречно-гребенчатую структуру, и имеет электрический контакт с ней. Матрица 18 содержит в себе множество электродов 20. Нижняя поверхность подложки 10 снабжена контактом 22, который является заземленным. Матрица 18 электродов, имеющих встречно-гребенчатую структуру, соединена с системой измерения тока или заряда через соответствующую цепь - схему развязки (схематично изображенную на чертеже в виде конденсатора 24). Посредством номера позиции 26 обозначено напряжение смещения.

В режиме использования изобретения регистрируемое излучение падает на тонкий высококачественный слой 12. Под действием внешнего напряжения смещения осуществляют разделение возникших электронно-дырочных пар. Это приводит к возникновению электрического тока во внешней цепи, который измеряют посредством системы измерения тока или заряда. По величине тока/заряда судят об измеренной интенсивности излучения.

Во втором варианте осуществления (на чертеже не показан) на поверхности высококачественного слоя 12 создают матрицу электродов, имеющих встречно-гребенчатую структуру. Осуществляют электрическое смещение первой совокупности электродов посредством напряжения от -1000 В (вольт) до +1000 В, а вторую совокупность заземляют. В режиме использования изобретения регистрируемое излучение падает на тонкий высококачественный слой 12. Под действием внешнего напряжения смещения осуществляют разделение возникших электронно-дырочных пар. Это приводит к возникновению электрического тока во внешней цепи, который измеряют посредством системы измерения тока или заряда. По величине тока/заряда судят об измеренной интенсивности излучения.

Описанный и проиллюстрированный на чертеже детектор излучения имеет несколько преимуществ по сравнению с детекторами, выполненными из алмаза из известного уровня техники. Во-первых, большая зернистость слоя, выращенного поверх подложки, обеспечивает наличие лучших рабочих параметров. Во-вторых, возрастает количество зерен в виде одиночных кристаллов, соединяющих промежуток между соседними электродами матрицы электродов, имеющей встречно-гребенчатую структуру. Это приводит к увеличению амплитуды сигнала при заданной интенсивности излучения. В-третьих, поскольку подложка имеет электрическую проводимость, то она может быть использована в качестве нижнего электрода. В-четвертых, плотность вероятности дефектов в слое, выращенном поверх подложки, является более низкой, что обусловлено большими размерами зерен кристаллов в этом слое. В-пятых, детектор является значительно более надежным.

Дальнейшее пояснение настоящего изобретения осуществляют посредством приведенного ниже примера.

ПРИМЕР

Посредством масс-спектрометрии вторичных ионов было показано, что слой алмаза, легированного бором, имеющий размеры 4,5 мм × 4,5 мм × 0,8 мм и шероховатость Ra поверхности менее 30 нм, обладает равномерным распределением концентрации атомов бора, равной 1019 атомов на кубический сантиметр (см3). Этот слой был использован в качестве подложки для наращивания поверх него посредством ХОГФ дополнительного слоя алмаза высокой чистоты толщиной 80 мкм. Подложка с выращенным поверх нее слоем алмаза подвергнута обработке, в результате чего было получено изделие, имеющее тонкий высококачественный слой толщиной 10 мкм с Ra<30 нм, выращенный поверх подложки, легированной бором. Анализ параметров посредством масс-спектрометрии вторичных ионов показал, что на той стороне поверхности раздела, которая имеет высокую чистоту, наличие бора невозможно было обнаружить. Конечные размеры полученного изделия равны 4,5 мм × 4,5 мм × 0,81 мм. Было установлено, что такая конструкция пригодна для использования в качестве детектора излучения в устройстве, изображенном на чертеже.

Похожие патенты RU2237912C2

название год авторы номер документа
Способ изготовления светоизлучающего PIN-диода 2023
  • Тарелкин Сергей Александрович
  • Буга Сергей Геннадьевич
  • Приходько Дмитрий Дмитриевич
  • Квашнин Геннадий Михайлович
  • Бланк Владимир Давыдович
  • Корнилов Николай Владимирович
RU2817525C1
СПОСОБ ПОЛУЧЕНИЯ ЛЕГИРОВАННОГО АЛМАЗА 2013
  • Бланк Владимир Давыдович
  • Терентьев Сергей Александрович
  • Корнилов Николай Владимирович
  • Тетерук Дмитрий Владимирович
RU2537491C2
АЛМАЗ, ЛЕГИРОВАННЫЙ БОРОМ 2002
  • Скарсбрук Джеффри Алан
  • Мартиноу Филип Морис
  • Туитчен Даниел Джеймс
  • Вайтхед Эндрью Джон
  • Купер Майкл Эндрью
  • Дорн Бэрбель Сусанне Шарлотте
RU2315826C2
ЭЛЕКТРОЛИТИЧЕСКАЯ ЯЧЕЙКА, ОБОРУДОВАННАЯ МИКРОЭЛЕКТРОДАМИ 2013
  • Гулла Андреа Франческо
RU2632901C2
МОНОКРИСТАЛЛИЧЕСКИЙ, ПОЛУЧЕННЫЙ ХОГФ, СИНТЕТИЧЕСКИЙ АЛМАЗНЫЙ МАТЕРИАЛ 2012
  • Диллон Харприт Каур
  • Твитчен Дэниэл Джеймс
  • Хан Ризван Уддин Ахмад
RU2575205C1
ДЕТЕКТОР НЕЙТРОНОВ 2009
  • Васенков Александр Анатольевич
  • Ильичев Эдуард Анатольевич
  • Кочержинский Игорь Константинович
  • Полторацкий Эдуард Алексеевич
  • Рычков Геннадий Сергеевич
  • Гнеденко Валерий Герасимович
  • Федоренко Станислав Николаевич
RU2386983C1
Алмазный детектор тепловых нейтронов 2022
  • Алтухов Андрей Александрович
RU2821300C2
Способ изготовления алмазного диода Шоттки 2023
  • Тарелкин Сергей Александрович
  • Приходько Дмитрий Дмитриевич
  • Буга Сергей Геннадьевич
  • Лупарев Николай Викторович
  • Голованов Антон Владимирович
  • Бланк Владимир Давыдович
  • Квашнин Геннадий Михайлович
  • Терентьев Сергей Александрович
RU2816671C1
АЛМАЗНЫЙ ДЕТЕКТОР ТЕПЛОВЫХ НЕЙТРОНОВ 2014
  • Алтухов Андрей Александрович
  • Зяблюк Константин Николаевич
  • Колюбин Владимир Александрович
  • Конов Виталий Иванович
  • Ральченко Виктор Григорьевич
  • Кононенко Тарас Викторович
RU2565829C1
МОНОКРИСТАЛЛИЧЕСКИЙ АЛМАЗ, ПОЛУЧЕННЫЙ МЕТОДОМ ХИМИЧЕСКОГО ОСАЖДЕНИЯ ИЗ ГАЗОВОЙ ФАЗЫ, И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2001
  • Скарсбрук Джеффри Алан
  • Мартино Филип Морис
  • Коллинс Джон Ллойд
  • Суссманн Рикардо Саймон
  • Дорн Бэрбель Зузанна Шарлотта
  • Уайтхед Эндрью Джон
  • Туитчен Даниель Джеймс
RU2288302C2

Реферат патента 2004 года ДЕТЕКТОР ИЗЛУЧЕНИЯ, ВЫПОЛНЕННЫЙ ИЗ АЛМАЗА

Использование: для детектирования ионизирующего излучения. Сущность: детектор излучения содержит в себе дополнительный слой алмаза, созданный на поверхности подложки из алмаза, легированного бором. Способ регистрации или измерения излучения, в котором используется детектор, представляющий собой дополнительный слой алмаза, созданный на поверхности подложки из алмаза, легированного бором. Причем поверхность дополнительного слоя, нанесенного поверх подложки, подвергают воздействию излучения. Технический результат - увеличение амплитуды сигнала при заданной интенсивности излучения, повышение надежности. 2 н. и 12 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 237 912 C2

1. Детектор излучения, содержащий в себе дополнительный слой алмаза, созданный на поверхности подложки из алмаза, легированного бором.2. Детектор излучения по п.1, в котором осуществляется регистрация излучения, выбранного из следующих типов излучения: гамма-излучения, рентгеновского излучения, ультрафиолетового светового излучения, альфа-частиц и бета-частиц.3. Детектор излучения по одному из п.1 или 2, в котором алмаз, легированный бором, по своей сущности является поликристаллическим или монокристаллическим.4. Детектор излучения по любому из предыдущих пунктов, в котором алмаз, легированный бором, представляет собой алмаз, полученный посредством процесса ХОГФ (CVD).5. Детектор излучения по любому из предыдущих пунктов, в котором концентрация бора в алмазе, легированном бором, принимает значения в интервале от 1017 до 1021 атомов бора на кубический сантиметр.6. Детектор излучения по любому из предыдущих пунктов, в котором зернистость дополнительного слоя алмаза сравнима с зернистостью подложки.7. Детектор излучения по любому из предыдущих пунктов, в котором алмаз, легированный бором, подложки имеет зернистость от 20 до 50 мкм, а алмаз дополнительного слоя имеет зернистость от 20 до 50 мкм.8. Детектор излучения по любому из предыдущих пунктов, в котором подложка из алмаза, легированного бором, имеет толщину от 0,1 до 2 мм.9. Детектор излучения по любому из предыдущих пунктов, в котором дополнительный слой алмаза имеет толщину от 1 до 500 мкм.10. Детектор излучения по любому из предыдущих пунктов, в котором дополнительный слой алмаза имеет толщину от 3 до 50 мкм.11. Детектор излучения по любому из предыдущих пунктов, в котором слой алмаза, выращенного поверх подложки, выращен посредством процесса ХОГФ.12. Детектор излучения по п.11, в котором дополнительный слой алмаза, полученного посредством процесса ХОГФ, выращен на полированной поверхности.13. Детектор излучения по п.12, в котором Ra шероховатости полированной поверхности меньше, чем 30 нм.14. Способ регистрации или измерения излучения, содержащий следующие этапы: обеспечивают детектор, выполненный из алмаза, по любому из предыдущих пунктов, и поверхность дополнительного слоя, нанесенного поверх подложки, подвергают воздействию излучения.

Документы, цитированные в отчете о поиске Патент 2004 года RU2237912C2

Устройство для накалывания шпал перед пропиткой 1973
  • Цупак Евгений Федорович
  • Косой Валерий Абрамович
  • Капитанов Виталий Дмитриевич
  • Бондарев Александр Леонтьевич
SU479625A1
Датчик для измерения удельных потерь энергии ядерных излучений 1968
  • Козлов Станислав Федорович
SU451972A1
Устройство для загрузки листового материала на каретку 1985
  • Кривовязюк Анатолий Сергеевич
SU1238839A1
US 3668400 А, 06.06.1972
Навесной погрузчик к гусеничному трактору 1974
  • Курилов Алексей Петрович
  • Ябчинский Ришард Станиславович
  • Зиновьев Александр Филиппович
SU583974A1
Бесколесный шариковый ход для железнодорожных вагонов 1917
  • Латышев И.И.
SU97A1

RU 2 237 912 C2

Авторы

Уайтхед Эндрю Джон

Даты

2004-10-10Публикация

2001-03-13Подача