ДРОССЕЛИРУЕМЫЙ КИСЛОРОДНО-УГЛЕВОДОРОДНЫЙ ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ С ДОЖИГАНИЕМ ВОССТАНОВИТЕЛЬНОГО ГАЗА Российский патент 2004 года по МПК F02K9/48 

Описание патента на изобретение RU2238423C2

Изобретение относится к жидкостным ракетным двигателям (ЖРД), конкретно к ЖРД с турбонасосной подачей топлива, состоящего из раздельно хранимых окислителя и горючего.

Известен ЖРД, включающий магистрали жидких и газообразных рабочих тел, рассчитанную на проточное охлаждение углеводородным горючим камеру с форсуночной головкой и сверхзвуковым реактивным соплом, работающий на кислородно-углеводородном топливе при избытке горючего газогенератор, топливные насосы с приводом от газовой турбины, выхлопной патрубок которой подключен к форсуночной головке камеры, систему управления работой с регулятором тяги и дросселем регулирования соотношения топливных компонентов - см. Acta Astronautica, Vol.41, Nos 4-10, pp.209-217, published by Elsevier Science Ltd, 1997 - прототип изобретения.

ЖРД, выполненные по схеме с дожиганием, находят широкое применение в ракетах-носителях, при помощи которых осуществляется вывод полезных грузов в космос. Эти ЖРД могут функционировать при высоком давлении в камере (рк), что обеспечивает высокую степень преобразования химической энергии используемого двухкомпонентного жидкого топлива для получения тяги двигателя. Однако устройство-прототип имеет существенный недостаток. Дело в том, что при дросселировании известного ЖРД (то есть при управляемом снижении тяги) в пределах, определяемых условиями полета ракеты-носителя, наряду со снижением параметра рк снижается и расход горючего на охлаждение камеры, и его может оказаться недостаточно, чтобы охладить камеру. Это обстоятельство сужает диапазон дросселирования ЖРД.

Предлагаемое изобретение решает техническую задачу обеспечения работоспособности ЖРД в широком диапазоне дросселирования.

Поставленная техническая задача решается тем, что в ЖРД, включающем магистрали жидких и газообразных рабочих тел, рассчитанную на проточное охлаждение углеводородным горючим камеру с форсуночной головкой и сверхзвуковым реактивным соплом, работающий на кислородно-углеводородном топливе при избытке горючего газогенератор, топливные насосы с приводом от газовой турбины, выхлопной патрубок которой подключен к форсуночной головке камеры, систему управления работой с регулятором тяги и дросселем регулирования соотношения топливных компонентов, согласно изобретению в системе управления работой предусмотрено задействуемое на дроссельном режиме устройство создания дополнительной нагрузки для насоса углеводородного горючего.

В частных случаях изобретения:

- упомянутое устройство представляет собой нерегулируемое или регулируемое гидравлическое сопротивление, вводимое непосредственно в магистраль питания газогенератора горючим;

- упомянутое устройство включает перепускную магистраль с регулируемым или нерегулируемым гидравлическим сопротивлением.

При осуществлении изобретения ожидается технический результат, совпадающий с существом решаемой задачи.

Изобретение поясняется при помощи чертежа, где представлена функциональная схема ЖРД, устроенного согласно изобретению. ЖРД содержит создающую тяговое усилие камеру 1 с форсуночной головкой 1А, со сверхзвуковым реактивным соплом 1В и предназначенный для подачи жидкого топлива турбонасосный агрегат (ТНА). Он включает расположенные по однороторной схеме двухступенчатый насос кислородного окислителя (например, сжиженного кислорода) 2 с подкачивающей ступенью 2А, двухступенчатый насос углеводородного горючего (например, сжиженного метана) 3 с подкачивающей ступенью 3А и газовую турбину 4. Она подключена на входе к газогенератору 5, а на выходе - посредством выхлопного патрубка (газовода) 6 - к упомянутой форсуночной головке 1А. Эта головка соединена также с насосом окислителя - посредством высоконапорной магистрали 7 с установленным в ней электроприводным дросселем 8. Газогенератор 5 предназначен для выработки рабочего тела турбины, осуществляемого при сгорания части расходуемого ЖРД двухкомпонентного топлива с избытком горючего (в конкретном случае - метана). Форсуночная головка 5А газогенератора подключена к насосу горючего посредством высоконапорного трубопровода 9 с установленным в нем нормально открытым регулятором перепада давлений 10, а он сообщен управляющим трубопроводом 11 с магистралью 12, по которой в ГГ поступает окислитель из насосной ступени 2А. В указанной магистрали установлен электроприводной регулятор 13. Камера имеет корпус с двумя стенками, образующими тракт проточного охлаждения 1С. Он сообщен посредством подводящего трубопровода 14 с выходом насосной ступени 3 и сообщен посредством отводящего трубопровода 15 с входом насосной ступени 3А.

Как показано на чертеже штриховыми линиями, в описанном ЖРД по линии питания ГГ горючим может предусматриваться вместо регулятора 10 перепускная магистраль 16 с нормально закрытым клапаном 17.

Описанный ЖРД работает следующим образом. Сжиженный кислород поступает в насос 2, из которого основная часть жидкости (≈80%) по магистрали 7 подается в форсуночную головку 1А камеры 1. Оставшаяся часть окислителя поступает в подкачивающую насосную ступень 2А, из которой по магистрали 12 подается в форсуночную головку 5А газогенератора 5. Сжиженный метан поступает в насос 3. Часть горючего по трубопроводу 14 подается насосом в тракт проточного охлаждения 1С камеры, и нагретый хладагент отводится по трубопроводу 15 на вход подкачивающей насосной ступени 3А. Она повышает давление всей массы горючего для подачи его по трубопроводу 9 в форсуночную головку газогенератора. От сгорания топливных компонентов с избытком горючего в ГГ образуется восстановительный газ (с температурой Тгг порядка 500...1000 К). Он поступает на турбину 4, приводя во вращение ее ротор, а с ним и топливные насосы. Отработавший на турбине газ поступает по газоводу 6 в форсуночную головку 1А камеры и дожигается в огневом пространстве с окислителем, поступившим из магистрали 7. Высокотемпературные продукты сгорания расширяются в реактивном сопле 1В, создавая тягу ЖРД.

Управление рабочим режимом ЖРД осуществляют воздействием на органы 8, 10, 13, 17. При этом поворот заслонки дросселя 8 приводит к изменению расхода окислителя через двигатель, благодаря чему достигается необходимое (для одновременной выработки топлива из баков ракеты-носителя) изменение соотношения топливных компонентов. Перемещение иглы регулятора 13 приводит к изменению расхода окислителя (mо) в магистрали питания ГГ, вследствие чего меняются соотношение топливных компонентов в ГГ (кгг) и, следовательно, температура генераторного газа. Вследствие этого изменяется мощность ТНА, и ЖРД переводится в другой режим тяги. При увеличении mo величина Тгг возрастает, и двигатель форсируется, а при уменьшении mо величина Тгг снижается, и двигатель дросселируется.

При дросселировании происходит падение давления в магистрали 12 и соответственно в управляющем трубопроводе 11, благодаря чему исполнительный орган регулятора 10 перемещается в положение 10А на прикрытие проходного сечения. Вносимое этим дополнительное гидравлическое сопротивление (Δр) создает дополнительную нагрузку на насос углеводородного горючего, которая компенсируется - в целях обеспечения необходимого расхода горючего через ГГ (mг) - повышенными (по сравнению с ЖРД-прототипом) оборотами ТНА (n). При этом относительный расход горючего, поступающего по трубопроводу 14 на охлаждение камеры (mг, охл), также возрастает (по сравнению с ЖРД-прототипом). Выбором соответствующих величин Δр и n обеспечивают величину mг, охл, достаточную для надежного охлаждения камеры на дроссельном режиме. Тот же эффект может достигаться и открытием клапана 17, перепускающего часть расхода горючего из трубопровода 9 на вход насосной ступени 3А.

Существо изобретения не исчерпывается описанным выше конкретным ЖРД. Например, насосы окислителя и горючего могут приводиться от собственных газовых турбин, количество рабочих колес в насосах и турбинах может быть различным. Выбор типа агрегата (клапан, регулятор, дроссель), обеспечивающего дополнительную нагрузку насоса углеводородного горючего, определяется конкретными техническими требованиями к ЖРД. Указанный агрегат может представлять собой нерегулируемое или регулируемое гидравлическое сопротивление. Перепускная магистраль может устраиваться непосредственно между выходом насоса (насосной ступени) и другим местом рабочего тракта ЖРД с меньшим давлением (например, входом в двигатель).

Покажем эффективность нашего изобретения на примере конкретного проекта ЖРД с турбонасосной подачей двухкомпонентного топлива "кислород - метан". Этот ЖРД рассчитан на номинальную тягу 2 МН при рк=24 МПа и при работе в составе ракеты-носителя должен дросселироваться до рк, мин = 0,4 рк, что соответствует такому же снижению тяги. Значения других параметров ЖРД на номинальном и минимальном режимах тяги представлены в таблице ниже. Для сравнения в последнем столбце курсивом даны значения параметров на минимальном режиме для ЖРД-прототипа. Таблица содержит, наряду с упомянутыми в тексте, также параметр Nг - мощность насоса метанового горючего.

Как видно из таблицы, при дросселировании ЖРД до 40% номинального давления в камере расход горючего на ее охлаждение снижается до 36%, то есть примерно в одинаковой степени, что гарантирует надежное охлаждение камеры. В отличие от этого, при дросселировании ЖРД-прототипа камера прогорела бы, поскольку величина mг, охл снизилась бы до 25%, что недопустимо по условиям охлаждения конструкции.

Итак, на конкретном проекте показано, что предлагаемое изобретение решает техническую задачу обеспечения работоспособности ЖРД в широком диапазоне дросселирования, то есть ожидаемый технический результат от изобретения подтвержден.

В ряде случаев возможно получение весьма важного дополнительного технического результата. Он обусловлен тем фактом, что при дросселировании предложенного ЖРД возможно предотвратить снижение Тгг до опасного уровня, при котором в генераторном газе образовывалась бы сажа, осаждающаяся на элементах конструкции с последующим нарушением работы двигателя. Такая опасность существует для ЖРД, работающего на двухкомпонентном кислородно-углеводородном топливе, когда (как в нашем случае) привод турбины осуществляется восстановительным генераторным газом. Изобретение устраняет указанную опасность.

Похожие патенты RU2238423C2

название год авторы номер документа
СПОСОБ РАБОТЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ С ТУРБОНАСОСНОЙ ПОДАЧЕЙ КИСЛОРОДНО-МЕТАНОВОГО ТОПЛИВА 2001
  • Бахмутов А.А.
  • Буканов В.Т.
  • Клепиков И.А.
  • Мирошкин В.В.
  • Прищепа В.И.
RU2209993C2
СПОСОБ РАБОТЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ С ТУРБОНАСОСНОЙ ПОДАЧЕЙ КРИОГЕННОГО ТОПЛИВА НА ОСНОВЕ КИСЛОРОДНОГО ОКИСЛИТЕЛЯ И УГЛЕВОДОРОДНОГО ГОРЮЧЕГО И ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 2001
  • Бахмутов А.А.
  • Буканов В.Т.
  • Клепиков И.А.
  • Мирошкин В.В.
  • Прищепа В.И.
  • Ромасенко Т.Я.
RU2197628C2
СПОСОБ РАБОТЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ С ТУРБОНАСОСНОЙ ПОДАЧЕЙ ТОПЛИВА НА ОСНОВЕ ГОРЮЧЕГО И КИСЛОРОДНОГО ОКИСЛИТЕЛЯ И ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 2001
  • Бахмутов А.А.
  • Буканов В.Т.
  • Клепиков И.А.
  • Мирошкин В.В.
  • Прищепа В.И.
  • Ромасенко Т.Я.
RU2197629C2
СПОСОБ РАБОТЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ С ТУРБОНАСОСНОЙ ПОДАЧЕЙ КИСЛОРОДНО-МЕТАНОВОГО ТОПЛИВА 1999
  • Бахмутов А.А.
  • Буканов В.Т.
  • Клепиков И.А.
  • Мирошкин В.В.
  • Прищепа В.И.
  • Ромасенко Т.Я.
RU2166661C1
СПОСОБ РАБОТЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ С ЗАМКНУТЫМ ПАРОЖИДКОСТНЫМ КОНТУРОМ В СИСТЕМЕ ТУРБОНАСОСНОЙ ПОДАЧИ 2002
  • Буканов В.Т.
  • Клепиков И.А.
  • Мирошкин В.В.
  • Прищепа В.И.
RU2211938C1
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ С ТУРБОНАСОСНОЙ ПОДАЧЕЙ КРИОГЕННОГО ТОПЛИВА 2001
  • Бахмутов А.А.
  • Буканов В.Т.
  • Клепиков И.А.
  • Мирошкин В.В.
  • Прищепа В.И.
  • Ромасенко Т.Я.
RU2202703C2
УПРАВЛЯЕМЫЙ МНОГОКАМЕРНЫЙ РАКЕТНЫЙ АППАРАТ НА ЖИДКОМ ТОПЛИВЕ 1999
  • Бахмутов А.А.
  • Буканов В.Т.
  • Клепиков И.А.
  • Прищепа В.И.
RU2156874C1
СПОСОБ РАБОТЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ С ПАРОЖИДКОСТНЫМ КОНТУРОМ В СИСТЕМЕ ТУРБОНАСОСНОЙ ПОДАЧИ ТОПЛИВА 2003
  • Буканов В.Т.
  • Клепиков И.А.
  • Мирошкин В.В.
  • Прищепа В.И.
RU2238424C1
ТУРБОНАСОСНАЯ СИСТЕМА ПИТАНИЯ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ 2002
  • Бахмутов А.А.
  • Буканов В.Т.
  • Каналин Ю.И.
  • Клепиков И.А.
  • Мирошкин В.В.
  • Прищепа В.И.
RU2246023C2
ДВИГАТЕЛЬ ДЛЯ РАКЕТНОЙ СИЛОВОЙ УСТАНОВКИ ЖИДКОГО ТОПЛИВА (ВАРИАНТЫ) 1996
  • Бахмутов Аркадий Алексеевич
  • Буканов Владислав Тимофеевич
  • Клепиков Игорь Алексеевич
  • Прищепа Владимир Иосифович
RU2119081C1

Реферат патента 2004 года ДРОССЕЛИРУЕМЫЙ КИСЛОРОДНО-УГЛЕВОДОРОДНЫЙ ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ С ДОЖИГАНИЕМ ВОССТАНОВИТЕЛЬНОГО ГАЗА

Дросселируемый кислородно-углеводородный жидкостный ракетный двигатель с дожиганием восстановительного газа включает топливные магистрали, охлаждаемую углеводородным горючим камеру, работающий на кислородно-углеводородном топливе при избытке горючего газогенератор и топливные насосы с приводом от газовой турбины. Система управления работой двигателя включает установленные в магистралях кислородного окислителя регулятор тяги и дроссель регулирования соотношения топливных компонентов. В системе управления работой предусмотрено задействуемое на дроссельном режиме устройство создания дополнительной нагрузки для насоса углеводородного горючего. Устройство создания дополнительной нагрузки для насоса углеводородного горючего представляет либо гидравлическое сопротивление, вводимое непосредственно в магистраль питания газогенератора горючим, либо перепускную магистраль с гидравлическим сопротивлением. Изобретение обеспечит работоспособность жидкостных ракетных двигателей в широком диапазоне дросселирования и позволит предотвратить образование сажи в газогенераторе. 1 ил., 1 табл.

Формула изобретения RU 2 238 423 C2

Дросселируемый кислородно-углеводородный жидкостный ракетный двигатель с дожиганием восстановительного газа, включающий магистрали жидких и газообразных рабочих тел, рассчитанную на проточное охлаждение углеводородным горючим камеру с форсуночной головкой и сверхзвуковым реактивным соплом, работающий на кислородно-углеводородном топливе при избытке горючего газогенератор, топливные насосы с приводом от газовой турбины, выхлопной патрубок которой подключён к форсуночной головке камеры, систему управления работой с регулятором тяги и дросселем регулирования соотношения топливных компонентов, установленными в магистралях кислородного окислителя, отличающийся тем, что в системе управления работой предусмотрено задействуемое на дроссельном режиме устройство создания дополнительной нагрузки для насоса углеводородного горючего, представляющее либо гидравлическое сопротивление, вводимое непосредственно в магистраль питания газогенератора горючим, либо перепускную магистраль с гидравлическим сопротивлением.

Документы, цитированные в отчете о поиске Патент 2004 года RU2238423C2

KLEPIKOV I.A
et al
The new generation of rocket engines, operating by ecologically safe propellant “liquid oxygen and liquefied natural gas (methane)”
Acta Astronautica, 1997, Vol
Механический грохот 1922
  • Красин Г.Б.
SU41A1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Парный рычажный домкрат 1919
  • Устоев С.Г.
SU209A1
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ С ДОЖИГАНИЕМ ТУРБОГАЗА 1999
  • Каторгин Б.И.
  • Чванов В.К.
  • Деркач Г.Г.
  • Мовчан Ю.В.
  • Челькис Ф.Ю.
  • Семенов В.И.
  • Толстиков Л.А.
  • Гнесин М.Р.
  • Ракшин В.К.
RU2158839C2
US 6470670 B2, 29.10.2002
СПОСОБ РАБОТЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ И ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ 1996
  • Калмыков Г.П.
  • Янчилин Л.А.
RU2116491C1
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ НА КРИОГЕННОМ ТОПЛИВЕ 1996
  • Копылов В.В.
  • Сыровец М.Н.
RU2118684C1
СПОСОБ ИЗМЕНЕНИЯ РЕЖИМА РАБОТЫ ЖРД И ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ ДЛЯ РЕАЛИЗАЦИИ СПОСОБА 1998
  • Рачук В.С.
  • Титков Н.Е.
  • Орлов В.А.
  • Усманский В.Е.
RU2125177C1
СПОСОБ РАБОТЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ С ТУРБОНАСОСНОЙ ПОДАЧЕЙ КИСЛОРОДНО-МЕТАНОВОГО ТОПЛИВА 1999
  • Бахмутов А.А.
  • Буканов В.Т.
  • Клепиков И.А.
  • Мирошкин В.В.
  • Прищепа В.И.
  • Ромасенко Т.Я.
RU2166661C1
СПОСОБ ЗАПУСКА ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ И ЖИДКОСТНОЙ РАКЕТНЫЙ ДВИГАТЕЛЬ ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 1994
  • Клепиков Игорь Алексеевич
  • Бахмутов Аркадий Алексеевич
  • Буканов Владислав Тимофеевич
  • Каналин Юрий Иванович
  • Прищепа Владимир Иосифович
RU2084677C1

RU 2 238 423 C2

Авторы

Бахмутов А.А.

Буканов В.Т.

Клепиков И.А.

Мирошкин В.В.

Прищепа В.И.

Даты

2004-10-20Публикация

2002-12-04Подача