КОМБИНАЦИИ НА ОСНОВЕ НЕТРОПСИНА ИЛИ ЕГО БИС-ПРОИЗВОДНОГО, ОБЛАДАЮЩИЕ АНТИГЕРПЕТИЧЕСКОЙ АКТИВНОСТЬЮ Российский патент 2004 года по МПК A61K31/40 A61K31/522 A61K31/662 A61K31/7076 A61P31/22 

Описание патента на изобретение RU2240792C2

Изобретение относится к области медицинской вирусологии и касается разработки и создания новых комбинаций, обеспечивающих высокоэффективное ингибирование инфекции, вызываемой вирусом герпеса простого типа 1, на основе использования двух классов соединений, обладающих принципиально различным механизмом подавления герпесвирусной инфекции - с одной стороны, производных нетропсина и, с другой стороны, модифицированных нуклеозидов или фосфоноуксусной кислоты.

Противовирусная активность и механизм действия противоопухолевых антибиотиков нетропсина и дистамицина хорошо известны. Они связываются в узкой бороздке ДНК в области связывания транскрипционных факторов с сайтами, состоящими из 4-5 пар АТ-оснований соответственно, ингибируя инициацию транскрипции [1, 2]. Они также ингибируют активность ДНК-топоизомераз I и II [3, 4], обратной транскриптазы и интегразы вируса иммунодефицита человека [5]. Однако эти антибиотики не нашли применения в клинической практике из-за высокой токсичности.

Одним из путей повышения селективности (избирательности) связывания этих соединений с ДНК является синтез бис-производных нетропсина и дистамицина, ковалентно связанных друг с другом в различных ориентациях. Начиная с 80-х годов, известная группа Е. DeClercq с соавторами изучала активность бис-производных нетропсина, соединенных алифатической цепочкой, состоящей из 0-10 метиленовых звеньев, в ориентации хвост-к-хвосту [6] и производных нетропсина, содержащих дополнительные пиррольные циклы [7]. Было установлено, что эта группа соединений обладает противоопухолевой активностью, способна селективно ингибировать репродукцию вируса вакцины (химиотерапевтический индекс (ХТИ) до 500). Была обнаружена невысокая активность этих соединений в отношении вируса герпеса простого типа 2 (ХТИ 6 и ниже). В отношении вируса герпеса простого типа 1 (ВПГ-1) активность практически отсутствовала. В ряде случаев минимальная цитотоксическая концентрация была снижена в 5-10 раз по сравнению с нетропсином.

В доступной нам литературе данных об изучении противовирусной активности комбинации нетропсина и дистамицина или их производных с модифицированными нуклеозидами или аналогами пирофосфата обнаружено не было.

Нами был синтезирован ряд бис-производных нетропсина, оказавшихся высокоселективными ингибиторами репродукции ВПГ-1 [8]. Была проверена их способность усиливать противогерпетическую активность известных лекарственных препаратов, что могло позволить также снизить токсический эффект благодаря снижению активных концентраций.

Сущность изобретения заключается в создании двухкомпонентных комбинаций на основе нетропсина или его бис-производного с модифицированными нуклеозидами или фосфоноуксусной кислотой, обеспечивающих значительное усиление противогерпетического действия по сравнению с каждым из комбинируемых противовирусных соединений, взятых в отдельности, и приводящих к увеличению избирательности противогерпетического действия.

При изучении противогерпетической активности соединений и их комбинаций in vitro культуру клеток Vero инфицировали ВПГ-1 штамм L2 с множественностью 0,1 БОЕ/кл (где БОЕ - бляшкообразующая единица) и инкубировали под жидкой средой поддержки, содержащей препараты или их комбинации в известных концетрациях. После 48 часов инкубации, когда в контроле вируса развивался 95-100% цитопатический эффект, определяли концентрации, на 50% ингибирующие развитие вирусиндуцированного цитопатического эффекта по сравнению с контролем - ИД50. Эффект комбинации соединений оценивали путем вычисления индекса FIC (fractional inhibitory concentration) как сумму отношений ИД50 каждого из комбинируемых соединений в комбинации к ИД50 соединения при использовании отдельно. При величине FIC <0,5 эффект комбинации оценивался как выраженный синергидный, при FIC <0,9 как синергидный, при FIC = 1,0 как аддитивный, при FIC >1,0 индифферентный или антагонизм.

Пример 1. Изучение биологической активности комбинации нетропсина с модифицированными нуклеозидами и фосфоноуксусной кислотой на модели ВПГ-1 в культуре клеток.

Комбинация нетропсина с ацикловиром, ганцикловиром, Ара-А и фосфоноуксусной кислотой приводит к усилению противогерпетического эффекта. 50%-ное ингибирование вирусиндуцированного цитопатического эффекта достигается при сочетанном применении нетропсина (фиг.1) в неэффективной концентрации 2,5 мкг/мл (1/2 ИД50) и ацикловира, ганцикловира, видарабина(Ара-А) и фосфоноуксусной кислоты, также взятыми в неэффетивных концентрациях, в 5, 5, 2 и 4 раза меньших, чем ИД50 этих соединений, взятых в отдельности. Соответствующие данные приведены в таблице. Полученный эффект можно оценить как синергидный (FIC <0,9 для комбинации нетропсина с ацикловиром, ганцикловиром и фосфоноуксусной кислотой) или аддитивный (FIC = 1,0 для комбинации с видарабином (Ара-А).

Пример 2. Изучение биологической активности комбинации бис-нетропсина 1 с модифицированными нуклеозидами и фосфоноуксусной кислотой на модели ВПГ-1 в культуре клеток.

При сочетанном применении бис-нетропсина 1 (фиг.2) и ацикловира на 50% ингибировать развитие вирусиндуцированного цитопатического эффекта удается при их использовании в концентрациях в 33 и 6 раз меньших, чем ИД50 при монотерапии. При использовании бис-нетропсина 1 в комбинации с ганцикловиром их концентрации удается снизить в 16 и 5 раз соответственно (выраженный синергидный эффект). При комбинации бис-нетропсина-1 с фосфоноуксусной кислотой отмечен синергидный эффект. При использовании бис-нетропсина 1 в комбинации с видарабином (Ара-А) 50% ингибирование вирусиндуцированного цитопатического эффекта достигается при сочетанном применении этих соединений в концентрациях, равных 1/2 ЦД50 (аддитивный эффект).

Пример 3. Изучение цитотоксического действия нетропсина, бис-нетропсина 1 и их комбинаций in vitro.

В таблице представлены результаты изучения токсического действия нетропсина и бис-нетропсина 1, а также их комбинаций в культуре клеток Vero с использованием метода окрашивания клеток трипановым голубым, основанным на способности мертвых клеток окрашиваться красителем. После 72-часовой инкубации клеток в присутствии изучаемых соединений или их комбинаций клетки подсчитывали с помощью гемоцитометра и определяли величину ЦД50 - концентрацию соединений, в присутствии которых погибает не более 50% клеток по сравнению с контролем, инкубируемым без препаратов. Как видно из таблицы, предлагаемые комбинации малотоксичны: при их использовании в диапазоне концентраций, обеспечивающих активное подавление герпесвирусной инфекции, величина ЦД50 не достигается.

Таким образом комбинация нетропсина, бис-нетропсинов с модифицированными нуклеозидами или фосфоноуксусной кислотой обеспечивает ингибирующее аддитивное и синергидное действие на модели ВПГ-1 в культуре клеток.

В основе усиления противогерпетического эффекта комбинаций бис-нетропсинов и модифицированных нуклеозидов лежит различный механизм их действия на синтез вирусной ДНК. Нетропсин и бис-нетропсины специфически связываются в узкой бороздке ДНК с кластерами из нескольких АТ-пар оснований, препятствуя таким образом связыванию белков, участвующих в регуляции процессов транскрипции или репликации ДНК. Модифицированные нуклеозиды, являясь аналогами природных нуклеозидов в виде трифосфатов, включаются в состав синтезируемой цепочки вирусной ДНК, приводя к терминации синтеза ДНК, ингибируют активность ДНК-полимеразы. Фосфоноуксусная кислота конкурирует с обменом пирофосфата из дезоксинуклеозидтрифосфата, связываясь с ДНК-полимеразой, ингибирует ДНК-полимеразу. Положительный эффект изобретения заключается в создании комбинаций соединений (бис-нетропсинов с модифицированными нуклеозидами или фосфоноуксусной кислотой), обеспечивающих значительное усиление противогерпетического действия по сравнению с каждым из комбинируемых противовирусных веществ, взятых в отдельности.

Литература

1. Dervan P.B., Burli R.W. // Current Opinion in Chem. Biol., 1999, V.3, P. 688-693.

2. Korka M.L., Yoon D., Goodsell D et al. // Proc. Nat. Acad. Sci. USA, 1985. V.82. P. 1376-1380.

3. Beerman T.A., Woynarowski J.M., Sigmund R.D. et al. // Biochim. Biophys. Acta, 1991, 1090. P. 52-60.

4. Burkhardt G., Simon H., Storl К et al. // J. Biomol. Struct. Dyn., 1997. V.15. P. 81-95.

5. Filipowsky M.E., Kopka M.L., Brazil-Zison M. et al. // Biochemistry, 1996. V.35. P. 15397-15410.

6. Lown J.W., Krowicki K., Balzarini J. et al. // J. Med. Chem., 1989. V.32. P. 2368-2375.

7. Baraldi P.O., Balboni G., Pavani M.G. et al. // J.Med.Chem., 2001. V.44. P. 2536-2543.

8. Андронова В.Л., Гроховский С.Л., Суровая А.Н. и др. // ДАН, 2001. Т.380, №4. С. 1-4.

Похожие патенты RU2240792C2

название год авторы номер документа
ДИМЕРНОЕ ПРОИЗВОДНОЕ НЕТРОПСИНА-15-ЛИЗ-БИС-НЕТРОПСИН- И КОМБИНАЦИИ НА ЕГО ОСНОВЕ, ОБЛАДАЮЩИЕ АНТИГЕРПЕТИЧЕСКОЙ АКТИВНОСТЬЮ 2004
  • Галегов Г.А.
  • Андронова В.Л.
  • Гурский Г.В.
  • Суровая А.Н.
  • Гроховский С.Л.
RU2265610C1
ПРОИЗВОДНЫЕ НЕТРОПСИНА, ОБЛАДАЮЩИЕ АНТИВИРУСНОЙ АКТИВНОСТЬЮ 2008
  • Галегов Георгий Артемьевич
  • Андронова Валерия Львовна
  • Гурский Георгий Валерианович
  • Суровая Анна Никитична
  • Гроховский Сергей Львович
RU2394838C2
2-Амино-5,6-дифтор-1-(бета-D-рибофуранозил)-бензимидазол, способ получения и противовирусная активность его в отношении вируса герпеса простого 1-го типа 2016
  • Константинова Ирина Дмитриевна
  • Харитонова Мария Игоревна
  • Мирошников Анатолий Иванович
  • Котовская Светлана Константиновна
  • Чарушин Валерий Николаевич
  • Галегов Георгий Артемьевич
  • Андронова Валерия Львовна
RU2629670C2
ПРИМЕНЕНИЕ ГИДРОХЛОРИДА (3-ГИДРОКСИ-1-АДАМАНТИЛ)-1-ЭТИЛАМИНА В КАЧЕСТВЕ ИНГИБИТОРА ВИРУСА ГЕРПЕСА ПРОСТОГО ТИПА 1 2001
  • Моисеев Игорь Константинович
  • Макарова Надежда Викторовна
  • Поздняков Виктор Викторович
  • Галегов Георгий Артемьевич
  • Андронова Валерия Львовна
RU2269338C1
ГИДРОХЛОРИДЫ (3-R-1-АДАМАНТИЛ)-1-ЭТИЛАМИНОВ, ОБЛАДАЮЩИЕ ПРОТИВОВИРУСНОЙ АКТИВНОСТЬЮ, И СПОСОБ ИХ ПОЛУЧЕНИЯ 2001
  • Моисеев И.К.
  • Макарова Н.В.
  • Поздняков В.В.
  • Галегов Г.А.
  • Андронова В.Л.
RU2247714C2
КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ ГЕРМАНИЯ С ПРОИЗВОДНЫМИ АЗОТИСТЫХ ОСНОВАНИЙ ПУРИНОВОГО РЯДА, СПОСОБЫ ИХ ПОЛУЧЕНИЯ И СОДЕРЖАЩИЕ ИХ ЛЕКАРСТВЕННЫЕ СРЕДСТВА 2012
  • Исаев Александр Дмитриевич
  • Амбросов Игорь Валерьевич
  • Манашеров Тамаз Омарович
  • Матело Светлана Константиновна
RU2487878C1
3-Бутилтио-1-(бета-D-2-дезоксирибофуранозил)-5-фенил-(4Н)-1,2,4-триазол, синтез, противогерпесвирусное действие 2023
  • Константинова Ирина Дмитриевна
  • Фатеев Илья Владимирович
  • Андронова Валерия Львовна
  • Есипов Роман Станиславович
  • Мирошников Анатолий Иванович
  • Сасмаков Собирджан Анарматович
  • Азимова Шахноз Садыковна
  • Абдурахманов Жалолиддин Мирджамильевич
  • Зияев Абдухаким Анварович
  • Долимов Хаётжон Хакимжон Угли
RU2815137C1
4-((Z)-4'-ГИДРОКСИБУТЕН-2'-ИЛ)-2-R-6-ФЕНИЛ-1,2,4-ТРИАЗОЛО[5,1-c][1,2,4]ТРИАЗИН-7-ОНЫ 2008
  • Чупахин Олег Николаевич
  • Русинов Владимир Леонидович
  • Уломский Евгений Нарциссович
  • Чарушин Валерий Николаевич
  • Шестакова Татьяна Сергеевна
  • Деев Сергей Леонидович
  • Русинова Лариса Ивановна
  • Андронова Валерия Львовна
  • Галегов Георгий Артемьевич
  • Карпенко Инна Леонидовна
  • Ясько Максим Владимирович
  • Куханова Марина Константиновна
RU2376307C1
(3S)-4-[6-(Пурин-6-иламино)гексаноил]-3,4-дигидро-3-метил-7,8-дифтор-2Н-[1,4]бензоксазин и (3R)-4-[6-(Пурин-6-иламино)гексаноил]-3,4-дигидро-3-метил-7,8-дифтор-2Н-[1,4]бензоксазин, обладающие противовирусной активностью 2016
  • Мусияк Вера Васильевна
  • Галегов Георгий Артемьевич
  • Андронова Валерия Львовна
  • Краснов Виктор Павлович
  • Левит Галина Львовна
  • Груздев Дмитрий Андреевич
  • Чулаков Евгений Николаевич
  • Чарушин Валерий Николаевич
RU2644351C1
ФОСФОНАТНЫЕ ПРОИЗВОДНЫЕ АЦИКЛОВИРА И СПОСОБ ИХ ПОЛУЧЕНИЯ 2003
  • Галегов Г.А.
  • Андронова В.Л.
  • Скоблов Ю.С.
  • Ясько М.В.
  • Куханова М.К.
  • Карпенко И.Л.
  • Иванов А.В.
RU2239638C2

Иллюстрации к изобретению RU 2 240 792 C2

Реферат патента 2004 года КОМБИНАЦИИ НА ОСНОВЕ НЕТРОПСИНА ИЛИ ЕГО БИС-ПРОИЗВОДНОГО, ОБЛАДАЮЩИЕ АНТИГЕРПЕТИЧЕСКОЙ АКТИВНОСТЬЮ

Изобретение относится к медицине, а именно к разработке новых комбинаций антигерпетического действия. Предложена комбинация, состоящая из нетропсина и ацикловира, или ганцикловира, или фосфоноуксусной кислоты, или видарабина (Ара-А). Предложена также комбинация бис-производного нетропсина (фиг.2) и фосфоноуксусной кислоты, или видарабина (Ара-А). Комбинации обеспечивают высокий уровень противовирусной активности в отношении вируса герпеса. 2 н.п. ф-лы, 1 табл., 2 ил.

Формула изобретения RU 2 240 792 C2

1. Комбинация, обладающая антигерпетической активностью, состоящая из нетропсина и ацикловира, или ганцикловира, или фосфоноуксусной кислоты, или видарабина (Ара-А).2. Комбинация, обладающая антигерпетической активностью, состоящая из бис-производного нетропсина

и фосфоноуксусной кислоты или видарабина (Ара-А).

Документы, цитированные в отчете о поиске Патент 2004 года RU2240792C2

СПОСОБ УСИЛЕНИЯ ЛЕЧЕБНОГО ЭФФЕКТА ЛЕКАРСТВЕННЫХ СРЕДСТВ 1997
  • Щербинин В.В.
  • Чернышев Е.А.
RU2104032C1
RU 98100411 А, 10.11.1999
WO 9722613 A1, 26.06.1997
АКБЕРОВА С.И
и др
Действие пара-аминобензойной кислоты и ее комбинаций с ацикловиром на герпетическую инфекцию
Антибиотики и химиотерапия
- М., 1995, т.40, №10, с
Видоизменение пишущей машины для тюркско-арабского шрифта 1923
  • Мадьяров А.
  • Туганов Т.
SU25A1

RU 2 240 792 C2

Авторы

Галегов Г.А.

Андронова В.Л.

Гурский Г.В.

Суровая А.Н.

Гроховский С.Л.

Даты

2004-11-27Публикация

2002-07-30Подача