СПОСОБ ПЕРЕРАБОТКИ ВЫСОКОМОЛЕКУЛЯРНОГО УГЛЕВОДОРОДНОГО СЫРЬЯ Российский патент 2004 года по МПК C10G47/06 

Описание патента на изобретение RU2241020C1

Изобретение относится к области нефтепереработки и катализа процессов получения из тяжелого углеводородного сырья углеводородных фракций, используемых для получения жидких моторных топлив, а также в качестве сырья для производства растворителей, содержащих ароматические соединения.

Изобретение может быть использовано также для переработки тяжелых высокосернистых нефтей, высококипящих остатков их переработки, а также газовых конденсатов, природных битумов, битуминозных песков и других подобных продуктов.

В нефтяной промышленности актуальны процессы преобразования (гидрооблагораживания) тяжелого углеводородного сырья, представляющего собой нефтяные фракции с температурой кипения при атмосферном давлении выше 360° С в более легкие углеводороды. Процессы гидрооблагораживания включают также десульфуризацию, что в целом делает возможным получение качественных моторных топлив из полученных продуктов переработки исходных углеводородов.

В настоящее время доля вовлекаемых в переработку тяжелых углеводородов с повышенным содержанием серы, асфальтенов, металлов постоянно возрастает, и технической задачей изобретения является создание высокоэффективного способа их переработки, а также возможность вовлечения новых видов природного сырья, образующихся при разработке нефте-газоконденсатных месторождений.

Известен способ переработки тяжелого нефтяного сырья, включающий гидрогенизацию исходного сырья в присутствии катализатора полифосфата железа геле- или ксерогельной структуры, содержащего переходные металлы V-VIII групп Периодической системы. Процесс проводят при температуре 380-450° С, давлении 2-6 МПа и времени контакта 0,5-2,0 часа (патент РФ №2186090, опубл. 27.07.2002, кл. C 10 G 47/04).

Недостатком способа является образование в процессе гидрогенизации большого количества кокса, до 19%, и высокое газообразование, до 30%.

Известен способ переработки высоковязкой высокосернистой нефти, включающий разложение нефти методом легкого каталитического гидролиза в движущемся слое мелкодисперсного суспензированного катализатора концентрата металлов, полученного при газификации тяжелого остатка после перегонки нефти в смешанной плазме синтез-газа и водяного пара. Полученный в процессе газификации синтез-газ после очистки от сероводорода возвращают на стадию гидропиролиза и на стадию газификации тяжелого остатка в качестве водородсодержащего газа (патент РФ №2187536, опубл. 20.08.2002, кл. C 10 G 47/02).

Недостатком способа является большой расход катализатора (~2-10%) от исходного количества сырья и невысокий выход дистиллятных фракций (до 500° С), который составляет менее 66%.

Известен способ переработки высокомолекулярного углеводордного сырья, включающий гидрогенизацию при равномерном распределении в исходном сырье катализатора, полученного непосредственно в зоне реакции из эмульсии, образованной смешением исходного сырья с водным раствором, содержащим соль молибденовой кислоты, например парамолибдата аммония, взятых в массовом соотношении из расчета аммиак : молибден, равном (0,15-0,39):1. Процесс ведут при давлении водорода 3-8 МПа. В качестве сульфидизирующего агента используют серу, содержащуюся в исходном сырье, или сероводород. Образующиеся органические соединения с температурой кипения ниже 350° С отгоняют. Часть остатка с температурой кипения выше 350° С сжигают, а часть рециркулируют в процесс. Из золошлаковых остатков выщелачивают парамолибдат аммония, рециркулируемого в процесс (патент РФ №2146274, опубл. 10.03.2000, кл. C 10 G 47/06). Способ принят за прототип.

Недостатком способа является невысокая степень очистки от серы и необходимость рециркуляции тяжелого остатка после дистилляции гидрогенизата.

Техническим результатом заявленного изобретения является повышение степени очистки от серы жидких продуктов гидрогенизации, повышение прямого за счет исключения рециркуляции и упрощение процесса.

Технический результат достигается тем, что в способе переработки высокомолекулярного сырья, включающем гидрогенизацию исходного сырья при повышенных температуре и давлении в присутствии катализатора, получаемого в зоне реакции взаимодействием диспергированного в объеме сырья водного раствора солей молибдена и металлов VIII группы Периодической системы с сульфидирующим агентом, последующее отделение газообразных продуктов гидрогенизации и разделение низкокипящих и высококипящих углеводородов вакуумной разгонкой, согласно изобретению гидрогенизацию проводят при диспергации в сырье воды и соли молибдена при соотношении воды, молибдена и сырья (0,005-0,05):(0,0002-0,002):1 и количестве водорода 500-900 л/кг сырья. Кроме того, гидрогенизацию проводят в две стадии при использовании в качестве сульфидирующего агента водного раствора сульфида или полисульфида аммония при отношении в растворе серы к молибдену (0,6-3,2):1; на второй стадии гидрогенизации в зону реакции дополнительно вводят гранулированный катализатор гидроочистки, например таблетированный (кобальт-никель-молибденовый на основе оксида алюминия (Al-Co/Ni-Mo) катализатор, или на второй стадии гидрогенизации в зону реакции дополнительно вводят металлическую насадку, например, в виде металлических частиц, а также процесс гидрогенизации проводят при температуре 360-450° С и давлении 4-6 МПа.

Сущность способа заключается в том, что заявленная совокупность признаков обеспечивает прохождение процесса гидрооблагораживания сырья методом гидрогенизации с существенным увеличением выделения серы в газовую фазу.

Увеличение степени очистки от серы определяется заявленным соотношением вводимых в сырье реагентов и воды, а также расходом водорода.

Гидрогенизация углеводородного сырья в присутствии катализатора - сложный гетерофазный процесс, и заявленные отличительные признаки по сравнению с прототипом одновременно с повышением степени очистки от серы способствуют повышению скорости взаимодействия с водородом углеводородных компонентов исходного сырья, повышая тем самым степень гидрооблагораживания и выделения низкокипящих фракций. Кроме того, ускорение процессов разрыва углеводородных связей при выделении серы в газовую фазу позволяет сдвинуть температурный интервал гидрогенизации в сторону снижения температуры. Для гидрогенизации высокосернистых типов углеводородного сырья, указанного выше, температура процесса находится в интервале 360-450° С (это более широкий температурный интервал, чем в прототипе), в то же время этой температуры достаточно для образования с высоким выходом низкокипящих углеводородов в гидрогенизате. На дополнительное увеличение степени гидроочистки от серы положительно влияет осуществление процесса гидрогенизации в две стадии и дополнительное введение на второй стадии либо твердого катализатора гидроочистки, либо металлической насадки.

Сочетание действий катализатора - сульфида молибдена, образующегося в процессе гидрогенизации при дополнительном введенном твердом катализаторе на второй стадии процесса, обеспечивает длительную работу стационарного катализатора без его дезактивации. В этом случае загрязнения катализатора металлами, находящимися в сырье, не происходит, т.к. металлы были выделены в жидкую фазу на первой стадии.

При использовании на второй стадии металлической насадки за счет кинетических факторов также происходит и дополнительная очистка от серы, и более интенсивный разрыв связей в углеводородах, и соответственно увеличение степени конверсии сырья в низкокипящие фракции. В этом случае эффект достигается за счет улучшения перемешивания жидкой и газообразных фаз и увеличения, таким образом, поверхности массообмена.

Дополнительное введение в исходное сырье раствора сульфида или полисульфида аммония в качестве сульфидирующего агента при заявленном соотношении сырья, воды с серой и молибдена приводит к преимущественному образованию сульфида молибдена в виде сфер с диаметром от 0,005 до 0,15 мкм, что существенно увеличивает каталитическую активность катализатора и эффективность процесса в целом.

Обоснование параметров.

Заявляемое отношение воды и молибдена в эмульсии к сырью обеспечивает оптимальный размер частиц катализатора (MoS2), который согласно нашим исследованиям можно рассчитать по формуле

где r глоб и rкап - радиусы глобулы МоS2 и капли эмульсии, см;

с - концентрация водного раствора молибдата аммония, г/см3,

ρ - плотность растворенного в воде молибдата аммония, г/см3

Чем ниже концентрация молибдена в растворе, тем меньше радиусы глобул MoS2 и тем выше удельная поверхность и активность катализатора. Однако при очень большом разбавлении в газе возрастает концентрация водяных паров и снижается парциальное давление водорода и сероводорода, что приводит к снижению конверсии сырья и степени его гидрообессеиривания. Поэтому оптимальным верхним пределом массового соотношения воды и молибдена является 0,05:0,0002. Значение нижнего предела обусловлено тем, что для некоторых видов тяжелого сырья с целью предотвращения нежелательных побочных процессов паровой газификации количество воды в эмульсии должно быть снижено.

Соотношение молибдена и сырья выбрано исходя из экспериментальных данных и обеспечивает наилучшие результаты по выходу дистиллятных продуктов.

Выбранный сульфидирующий агент, (NH4)2S или полисульфид аммония, при определенном соотношении с молибденом обеспечивает образование в растворе ионов предкатализатора MoS2O2, которые при последующем нагреве в восстановительной среде водорода образуют каталитически активную форму катализатора уже при температуре сырья 250° С. В связи с неустойчивостью данного комплекса при разбавлении раствора катализатора водой соотношение S:Мо увеличивают до 3,2. При переработке высокосернистого сырья это соотношение целесообразно снизить до 0,6.

В процессах гидрогенизации и гидрокреконга тяжелого сырья (без его предварительной деасфальтизации или разгонки) на стационарных (таблетированных) катализаторах происходит быстрая дезактивация катализатора вследствие отложения на поверхности катализатора кокса и соединений металлов (ванадия, никеля и др.).

В заявленном процессе микроглобулы МоS2 сорбируют на своей поверхности твердые вещества, образующиеся при гидрокрекинге сырья (кокс, продукты разложения порфириновых комплексов ванадия и никеля и т.п.). Вследствие этого возможно осуществление процесса более глубокого гидрооблагораживания полученного первичного продукта, используя на второй стадии известные твердые катализаторы гидроочистки (алюмо-кобальт(никель)-молибденовые и др.)

Введение инертной добавки на второй стадии процесса обеспечивает улучшение массобмена между газовой и жидкой фазами и приводит к увеличению выхода дистиллятных фракций.

Примеры осуществления способа

Пример 1. Гидрогенизации подвергают остаток атмосферной разгонки газового конденсата (OK).

Состав и свойства остатка приведены в таблице 1.

Остаток (ОК) смешивали с водным раствором, содержащим парамолибдат аммония, (NН4)6Мо7О24·2О (МА), и сульфид аммония, (NH4)2S (СА), следующим образом. В 100 кг ОК эмульгировали 0,668 кг раствора, содержащего, г: вода 500, МА 36; (20 г Мо); СА 132 (64 г серы). Эмульгирование проводили в дисковом диспергаторе. В полученной эмульсии соотношение вода : молибден : сырье составило 0,0005:0,0002:1. Соотношение сера : молибден составило 3,2:1.

Приготовленную эмульсию подвергали гидрогенизации в проточном реакторе при температуре 450° С, давлении водорода 6 МПа, объемной скорости 2 ч-1 и количестве Н2 9 л/кг сырья.

Выход и состав полученных в результате гидрогенизации продуктов приведен в таблице 2.

Суммарный выход дистиллятных фракций составил 84,8%. Степень гидрообессеривания - 65,3%. Фракции гидрогенизата с т.к. ниже 520° С могут быть использованы для получения моторных топлив.

В остаток гидрогенизации с температурой кипения выше 520° С перешли ценные металлы, содержащиеся в исходном сырье, а также соединения металла-катализатора. Остаток подвергается сжиганию с извлечением металлов и регенерацией катализатора.

Пример 2.

Состав сырья тот же, что в примере 1.

Остаток (ОК) смешивали с водным раствором, содержащим парамолибдат аммония, (NН4)6Мо7О24·2О (МА), и сульфид аммония, (NH4)2S (CA), следующим образом. В 100 кг ОК эмульгировали 5,6075 кг раствора, содержащего, г: вода 5000, МА 360 (200 г Мо); CA 247,5 (120 г серы). Эмульгирование проводили в дисковом диспергаторе. В полученной эмульсии соотношение вода : молибден : сырье составило 0,05:0,002:1. Соотношение сера : молибден составило 0,6:1.

Приготовленную эмульсию подвергали гидрогенизации в проточном реакторе при температуре 360° С, давлении водорода 4 МПа, объемной скорости 0,8 ч-1 и количестве H2 500 л/кг сырья.

Выход и состав полученных в результате гидрогенизации продуктов приведен в таблице 3.

Степень гидрообессеривания составила 67,2%. Выход дистиллятных фракций Н.К. - 520° С составил 81,8%.

Фракции гидрогенизата с т.к. ниже 520° С могут быть использованы для получения моторных топлив.

Пример 3.

Гидрогенизацию проводили в двух последовательно установленных реакторах. Составы сырья, катализатора и условия процесса гидрогенизации в первом реакторе те же, что в примере 2. Во втором реакторе внутренний объем на 40% заполняли стальными шариками диаметром 3 мм. Во второй реактор поступал гидрогенизат, состав которого приведен в таблице 3. Температура и давление процесса гидрогенизации во втором реакторе те же, что в примере 2.

Выход и состав полученных в результате гидрогенизации продуктов приведен в таблице 4.

Степень гидрообессеривания составила 72,5%. Выход дистиллятных фракций Н.К. - 520° С составил 86,8%.

Фракции гидрогенизата с т.к. ниже 520° С могут быть использованы для получения моторных топлив.

Пример 4.

Гидрогенизацию проводили в двух последовательно установленных реакторах. Составы сырья, катализатора и условия процесса гидрогенизации в первом реакторе те же, что в примере 2. Во втором реакторе внутренний объем на 40% заполняли промышленным алюмо-никель-молибденовым катализатором гидроочистки, РК-442. Во второй реактор поступал гидрогенизат, состав которого приведен в таблице 3. Температура и давление процесса гидрогенизации во втором реакторе те же, что в примере 2.

Выход и состав полученных в результате гидрогенизации продуктов приведен в таблице 5.

Степень гидрообессеривания составила 87,5%. Выход дистиллятных фракций Н.К. - 520° С составил 89,3%.

Фракции гидрогенизата с т.к. ниже 520° С могут быть использованы для получения моторных топлив.

Пример 5.

Состав сырья тот же, что в примере 1.

Остаток дистилляции газового конденсата (ОК) смешивали с водным раствором, содержащим парамолибдат аммония, (NН4)6Мо7О24·2О (МА), и водным раствором полисульфида аммония, (NH4)2S5 (ПСА), осуществляли следующим образом. В 100 кг ОК эмульгировали 5,5055 кг раствора, содержащего, г: вода 5000; МА 360 (200 г Мо); ПСА 145,5 (120 г серы). Эмульгирование проводили в дисковом диспергаторе. В полученной эмульсии соотношение вода : молибден : сырье составило 0,05:0,002:1. Соотношение сера : молибден составило 0,6:1.

Приготовленную эмульсию подвергали гидрогенизации в проточном реакторе при температуре 360° С, давлении водорода 4 МПа, объемной скорости 0,8 ч-1 и количестве Н2 700 л/кг сырья.

Выход и состав полученных в результате гидрогенизации продуктов приведен в таблице 6.

Степень гидрообессеривания составила 65,3%. Выход дистиллятных фракций Н.К.-520° С составил 82,8%.

Пример 6.

Состав сырья тот же, что в примере 1.

Остаток (ОК) смешивали с водным раствором, содержащим парамолибдат аммония, (NН4)6Мо7О24·2О (МА); и полисульфид аммония, (NН4)2S5 (ПСА), следующим образом. В 100 кг ОК эмульгировали 0,6136 кг раствора, содержащего, г: вода 500; МА 36 (20 г Мо); ПСА 77,6 (64 г серы). Эмульгирование проводили в дисковом диспергаторе. В полученной эмульсии соотношение вода : молибден : сырье составило 0,0005:0,0002:1. Соотношение сера : молибден составило 3,2:1.

Приготовленную эмульсию подвергали гидрогенизации в проточном реакторе при температуре 450° С, давлении водорода 6 МПа, объемной скорости 2 ч-1 и количестве Н2 900 л/кг сырья.

Выход и состав полученных в результате гидрогенизации продуктов приведен в таблице 7.

Суммарный выход дистиллятных фракций составил 88%. Степень гидрообессеривания - 71,1%. Фракции гидрогенизата с т.к. ниже 520° С могут быть использованы для получения моторных топлив.

Таким образом, совокупность заявленных признаков по сравнению с прототипом позволяет повысить степень очистки от серы за счет повышения активности катализатора без увеличения его количества и при одновременном снижении температуры гидрогенизации. Кроме того, повышается прямой выход дистиллятных фракций и исключается рециркуляция тяжелого остатка, что делает процесс в целом более эффективным, а возможность вовлечения в переработку тяжелого сырья с повышенным содержанием серы позволяет существенно расширить сырьевую базу с использованием уже имеющихся перерабатывающих мощностей.

Похожие патенты RU2241020C1

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ ВЫСОКОМОЛЕКУЛЯРНОГО УГЛЕВОДОРОДНОГО СЫРЬЯ 2003
  • Ананенков А.Г.
  • Резуненко В.И.
  • Дмитриевский А.Н.
  • Скибицкая Н.А.
  • Гафаров Н.А.
  • Гольдфарб Ю.Я.
  • Зекель Л.А.
  • Сливинский Е.В.
  • Шпирт М.Я.
  • Бабаш С.Е.
  • Менщиков В.А.
RU2241022C1
СПОСОБ ПЕРЕРАБОТКИ ВЫСОКОМОЛЕКУЛЯРНОГО УГЛЕВОДОРОДНОГО СЫРЬЯ 1998
  • Скибицкая Н.А.
  • Резуненко В.И.
  • Дмитриевский А.Н.
  • Гафаров Н.А.
  • Джашитов Э.А.
  • Зекель Л.А.
  • Николаев В.В.
  • Шпирт М.Я.
  • Якубсон К.И.
RU2146274C1
Способ гидроконверсии остатка атмосферной дистилляции газового конденсата 2018
  • Хаджиев Саламбек Наибович
  • Кадиев Хусаин Магамедович
  • Зекель Леонид Абрамович
  • Кадиева Малкан Хусаиновна
RU2674160C1
ПРЕДСУЛЬФИДИРОВАННЫЙ КАТАЛИЗАТОР ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ 2005
  • Резниченко Ирина Дмитриевна
  • Анатолий Иванович
  • Целютина Марина Ивановна
  • Алиев Рамиз Рза Оглы
  • Бочаров Александр Петрович
  • Кастерин Владимир Николаевич
  • Волчатов Леонид Геннадьевич
  • Андреева Татьяна Ивановна
RU2288035C1
Способ гидроконверсии тяжелой части матричной нефти 2016
  • Хаджиев Саламбек Наибович
  • Зекель Леонид Абрамович
  • Кадиева Малкан Хусаиновна
  • Дандаев Асхаб Умалтович
  • Зайцева Ольга Владимировна
  • Кадиев Хусаин Магамедович
RU2614140C1
СПОСОБ ГИДРОКОНВЕРСИИ ТЯЖЁЛОГО УГЛЕВОДОРОДНОГО СЫРЬЯ (ВАРИАНТЫ) 2015
  • Хаджиев Саламбек Наибович
  • Кадиев Хусаин Магамедович
  • Зекель Леонид Абрамович
  • Кадиева Малкан Хусаиновна
RU2608035C1
СПОСОБ ПЕРЕРАБОТКИ НЕФТИ 2004
  • Заманов В.В.
  • Кричко А.А.
  • Озеренко А.А.
  • Озеренко Е.А.
  • Фросин С.Б.
RU2255959C1
КАТАЛИЗАТОР ДЛЯ ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ 2016
  • Томин Виктор Петрович
  • Целютина Марина Ивановна
  • Посохова Ольга Михайловна
RU2626454C1
СПОСОБ ГИДРООЧИСТКИ БЕНЗИНА КАТАЛИТИЧЕСКОГО КРЕКИНГА 2015
  • Перейма Василий Юрьевич
  • Леонова Ксения Александровна
  • Климов Олег Владимирович
  • Корякина Галина Ивановна
  • Носков Александр Степанович
RU2575639C1
Катализатор гидроочистки бензина каталитического крекинга и способ его получения 2019
  • Логинова Анна Николаевна
  • Свидерский Сергей Александрович
  • Морозова Янина Владиславовна
  • Рудяк Константин Борисович
  • Фадеев Вадим Владимирович
RU2708643C1

Реферат патента 2004 года СПОСОБ ПЕРЕРАБОТКИ ВЫСОКОМОЛЕКУЛЯРНОГО УГЛЕВОДОРОДНОГО СЫРЬЯ

Использование: нефтехимия и нефтепереработка. Сущность: проводят двухстадийную гидрогенизацию исходного сырья при диспергации в нем воды и соли молибдена при соотношении воды, молибдена и сырья (0,005-0,05):(0,0002-0,002):1 и количестве водорода 500-900 л/кг сырья при температуре 360-450°С и давлении 4-6 МПа в присутствии катализатора. Катализатор получают в зоне реакции взаимодействием диспергированного в объеме сырья водного раствора солей молибдена и металлов VIII группы Периодической системы с сульфидирующим агентом, в качестве которого используют водный раствор сульфида или полисульфида аммония при отношении в растворе серы к молибдену (0,6-3,2):1 на первой стадии гидрогенизации. На второй стадии гидрогенизации в зону реакции дополнительно вводят гранулированный катализатор гидроочистки, например таблетированный Al-Co/Ni-Mo катализатор, или металлическую насадку, например, в виде металлических частиц с последующим отделением газообразных продуктов гидрогенизации и разделением низкокипящих и высококипящих углеводородов вакуумной разгонкой. Технический результат: повышение степени очистки от серы жидких продуктов гидрогенизации, повышение прямого выхода за счет исключения рециркуляции и упрощение процесса. 4 з.п. ф-лы, 7 табл.

Формула изобретения RU 2 241 020 C1

1. Способ переработки высокомолекулярного углеводородного сырья, включающий гидрогенизацию исходного сырья при повышенных температуре и давлении в присутствии катализатора, получаемого в зоне реакции взаимодействием диспергированного в объеме сырья водного раствора солей молибдена или смеси солей молибдена и металлов VIII группы Периодической системы с сульфидирующим агентом, последующее отделение газообразных продуктов гидрогенизации и разделение низкокипящих и высококипящих углеводородов вакуумной разгонкой, отличающийся тем, что гидрогенизацию проводят при диспергации в сырье воды и соли молибдена при соотношении воды, молибдена и сырья (0,005-0,05):(0,0002-0,002):1, соответственно, и количестве водорода 500-900 л/кг сырья.2. Способ по п.1, отличающийся тем, что в качестве сульфидирующего агента используют водный раствор сульфида или полисульфида аммония при соотношении в растворе серы к молибдену (0,6-3,2):1.3. Способ по любому из пп.1 и 2, отличающийся тем, что гидрогенизацию проводят в две стадии, при введении в зону реакции на второй стадии гранулированного катализатора гидроочистки или насадки.4. Способ по любому из пп.1-3, отличающийся тем, что в качестве катализатора гидроочистки используют таблетированные алюмино-кобальт/ никель-молибденовые катализаторы, а в качестве насадки - металлические частицы.5. Способ по любому из пп.1-4, отличающийся тем, что процесс гидрогенизации ведут при температуре 360-450°С и давлении 4-6 МПа.

Документы, цитированные в отчете о поиске Патент 2004 года RU2241020C1

СПОСОБ ПЕРЕРАБОТКИ ВЫСОКОМОЛЕКУЛЯРНОГО УГЛЕВОДОРОДНОГО СЫРЬЯ 1998
  • Скибицкая Н.А.
  • Резуненко В.И.
  • Дмитриевский А.Н.
  • Гафаров Н.А.
  • Джашитов Э.А.
  • Зекель Л.А.
  • Николаев В.В.
  • Шпирт М.Я.
  • Якубсон К.И.
RU2146274C1
СПОСОБ ПЕРЕРАБОТКИ ВЫСОКОВЯЗКОЙ ВЫСОКОСЕРНИСТОЙ НЕФТИ 2001
  • Гарифзянова Г.Г.
  • Гарифзянов Г.Г.
  • Тухватуллин А.М.
  • Яруллин М.Р.
RU2187536C1
RU 2186090 C2, 27.07.2002
WO 9303117 A1, 18.02.1993.

RU 2 241 020 C1

Авторы

Ананенков А.Г.

Резуненко В.И.

Дмитриевский А.Н.

Скибицкая Н.А.

Гафаров Н.А.

Гольдфарб Ю.Я.

Зекель Л.А.

Сливинский Е.В.

Шпирт М.Я.

Даты

2004-11-27Публикация

2003-08-05Подача