Изобретение относится к области исследования процессов полиморфных превращений в металлах и твердофазных электропроводящих материалах при повышенных и высоких температурах и может быть использовано в процессе пластического деформирования материалов.
Известен способ определения температуры полиморфного превращения титановых сплавов методом пробных закалок (см. Металлография титановых сплавов. Под ред. Аношкина Н.Ф., Бочвара Г.А., Ливанова В.А. и др. М., Металлургия, 1980, с.36). Сущность этого метода заключается в фиксировании структуры сплава после закалки с нагревом при последовательно повышающихся температурах в районе α+β→β-перехода.
Этот способ весьма трудоемок, требует изготовления большого количества специальных образцов, сложного лабораторного оборудования и, кроме того, не отличается большой точностью и высокой производительностью.
Известен также способ определения температуры полиморфного превращения в двухфазных титановых сплавах, включающий нагрев образцов под закалку до заданной температуры, определение их микроструктуры и выявление зависимости между температурой нагрева под закалку и количеством первичной α-фазы (см. а.с. №394709, G 01 N 25/02, 1973, №34, с.142).
С помощью этого метода можно определить температуру полиморфного превращения путем закалки и исследования микроструктуры одного образца, но к основным недостаткам можно отнести то, что он остается весьма трудоемким и не отличается большой точностью и высокой производительностью.
Изобретение направлено на повышение точности определения температуры полиморфного превращения в двухфазных титановых сплавах и производительности, особенно при горячей листовой штамповке титановых заготовок при электроконтактном нагреве за счет исключения операций пробных закалок, микроисследований и расчетов.
Сущность предлагаемого технического решения заключается в том, что в способе определения температуры полиморфного превращения в двухфазных титановых сплавах, включающий нагрев образцов под закалку до заданной температуры и определение микроструктуры, нагрев производят до температуры, обеспечивающей свободное провисание (формоизменение) жестко зажатого образца, что соответствует температуре полиморфного превращения α→β.
Отличительным признаком заявленного способа определения температуры полиморфного превращения в двухфазных титановых сплавах является нагрев заготовки (образца) до температуры, обеспечивающей свободное провисание под собственным весом. Эта температура для заготовки (образца) является температурой полиморфного превращения α→β.
Изобретение поясняется графическими материалами, где на фиг.1, 2, 3, 4 изображена кинетика процесса нагрева, на фиг.5 представлены микроструктуры образцов. На представленных фиг.1-4 изображена заготовка 1, закрепленная на зажимах-контактах 2, расположенная между матрицей 3 и пуансоном 4.
Порядок операций в указанном способе следующий.
Образец исследуемого материала жестко закрепляют в зажимах-контактах, нагревают электроконтактным нагревом на установке, содержащей модернизированный трансформатор ТОЭСЗ-250/40, устройство контроля и автоматического поддержания температуры заготовки, систему автоматического поддержания заготовки и освобождения из зажимов-контактов, до температуры, обеспечивающей полное провисание под собственным весом, что соответствует температуре полиморфного превращения α→β.
Это техническое решение подтверждено исследованиями электроконтактного нагрева заготовок (образцов) из сплава ВТ 20. В первоначальный момент времени заготовку 1 жестко закрепляют на зажимах-контактах 2 и располагают параллельно матрице 3 и пуансону 4 (фиг.1). При электроконтактном нагреве по истечении некоторого времени (11 сек, фиг.2) из-за теплового расширения металла, благодаря конструкции зажимов-контактов, заготовка начинает упруго выгибаться в сторону пуансона 4. Величина прогиба заготовки увеличивается пропорционально росту ее температуры. При достижении заготовкой критической температуры наступает остановка роста прогиба, а затем его резкое изменение, т.е. происходит свободное провисание заготовки под собственным весом (фиг.3, 4). Такой критической температурой для заготовки является температура полиморфного превращения α→β. Это объясняется тем, что при температуре фазового превращения наблюдается снижение энергии связи между атомами в гексагональной плотноупакованной решетке, обусловленное изменением электронной конфигурации, необходимой для перехода в объемно-центрированную кубическую кристаллическую структуру титанового сплава (см. Физическое металловедение титана, Колачев Б.А., серия “Успехи современного металловедения”, М., Металлургия, 1976, с.184). Это приводит к свободному провисанию заготовки под собственным весом в данных условиях. В момент свободного провисания заготовку подвергают охлаждению в штампе.
Микроисследованиями установлено: по прототипу температура полиморфного превращения составляет ~975°С, как видно из фиг.5. По предлагаемому способу - температура полиморфного превращения составляет 970°С.
Пример.
Заготовка из титанового сплава ВТ 20 жестко закреплялась в зажимах-контактах и нагревалась электроконтактным нагревом на установке, содержащей модернизированный трансформатор ТОЭСЗ-250/40, устройство контроля и автоматического поддержания температуры заготовки, систему автоматического поддержания заготовки и освобождения из зажимов-контактов. При достижении температуры полиморфного превращения (970°С), определяемой по свободному провисанию заготовки под собственным весом, автоматически выключался пресс и производилось охлаждение заготовки в штампе.
Предлагаемый способ определения температуры полиморфного превращения в двухфазных титановых сплавах позволяет повысить точность определения температуры полиморфного превращения и производительность, особенно при горячей листовой штамповке титановых заготовок при электроконтактном нагреве за счет исключения операций пробных закалок, микроисследований и расчетов.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОБРАБОТКИ ПСЕВДО α-ТИТАНОВЫХ СПЛАВОВ | 2002 |
|
RU2241062C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ПОЛНОГО ПОЛИМОРФНОГО ПРЕВРАЩЕНИЯ ЖАРОПРОЧНЫХ ДВУХФАЗНЫХ ТИТАНОВЫХ СПЛАВОВ (АЛЬФА+БЕТА)-МАРТЕНСИТНОГО КЛАССА | 2012 |
|
RU2498280C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ НАЧАЛА ПОЛИМОРФНОГО ПРЕВРАЩЕНИЯ В ДВУХФАЗНЫХ ТИТАНОВЫХ СПЛАВАХ С ИСПОЛЬЗОВАНИЕМ МЕТОДА АКУСТИЧЕСКОЙ ЭМИССИИ | 2010 |
|
RU2447413C1 |
СПОСОБ УПРОЧНЕНИЯ ТИТАНОВЫХ СПЛАВОВ (ВАРИАНТЫ) | 2000 |
|
RU2202629C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ КРИТИЧЕСКОЙ ТЕМПЕРАТУРЫ ЗАКАЛКИ В ТИТАНОВЫХ СПЛАВАХ | 2023 |
|
RU2810203C1 |
СПОСОБ ПОЛУЧЕНИЯ ДЕФОРМИРОВАННОЙ ЗАГОТОВКИ ИЗ ТИТАНОВОГО СПЛАВА И ИЗДЕЛИЕ, ПОЛУЧЕННОЕ ИЗ НЕЕ | 2004 |
|
RU2246556C1 |
КЛАПАН ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ЖАРОПРОЧНЫЙ ТИТАНОВЫЙ СПЛАВ ДЛЯ НЕГО | 2003 |
|
RU2244135C2 |
Способ изготовления биметаллических труб из двухфазных (α+β)-титановых и деформируемых алюминиевых сплавов | 2022 |
|
RU2791931C1 |
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЯ ИЗ α+β-ТИТАНОВОГО СПЛАВА | 2008 |
|
RU2368700C1 |
Способ изготовления бесшовных холоднодеформированных труб из титанового сплава типа Ti-3Al-2,5V | 2017 |
|
RU2661125C1 |
Изобретение относится к области исследования процессов полиморфных превращений в металлах и твердофазных электропроводящих материалах. Способ определения температуры полиморфного превращения в двухфазных титановых сплавах включает следующие операции. Образцы нагревают под закалку до температуры, обеспечивающей свободное провисание жестко закрепленного образца, соответствующей температуре полиморфного превращения α→β. Технический результат: повышение точности определения температуры полиморфного превращения в двухфазных титановых сплавах. 5 ил.
Способ определения температуры полиморфного превращения в двухфазных титановых сплавах, включающий нагрев образцов под закалку до заданной температуры, отличающийся тем, что нагрев производят до температуры, обеспечивающей свободное провисание жестко закрепленного образца, что соответствует температуре полиморфного превращения α→β.
СОЛОНИНА А.П | |||
и др., “Жаропрочные титановые сплавы”, М., “Металлургия”, 1976, стр.79 | |||
ВПТБ | 0 |
|
SU394709A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРНЫХ ТОЧГК ПРЕВРА1!1,ЕНИЙ МАРТПНСИТИОГО ТИПА | 0 |
|
SU409124A1 |
US 426521 A, 21.04.1981 | |||
0 |
|
SU159661A1 |
Авторы
Даты
2005-03-20—Публикация
2002-08-14—Подача