СПОСОБ АДАПТИВНОЙ АВТОМАТИЧЕСКОЙ САМОНАСТРОЙКИ МНОГОПАРАМЕТРИЧЕСКИХ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ НА ОПТИМАЛЬНЫЕ УСЛОВИЯ Российский патент 2005 года по МПК G05B13/00 

Описание патента на изобретение RU2251134C2

Изобретение относится к автоматической оптимизации многопараметрических объектов управления, обладающих одноэкстремальной функцией качества, основанной на каком-либо критерии оптимальности.

Известны способы случайного поиска экстремума функции качества одноэкстремальных многопараметрических объектов, заключающиеся в формировании случайных входных шаговых воздействий на объект управления [1].

Недостатком таких способов является невысокое быстродействие поиска на объектах управления. Наиболее близким к изобретению по технической сущности является способ, основанный на формировании случайных нормально распределенных входных шаговых воздействий на объект управления и адаптации их распределения и интенсивности самообучения [2].

Недостатком этого способа является невысокое быстродействие поиска. Существенное увеличение быстродействия поиска достигается одновременной работой поиска по нескольким независимым параллельным каналам и адаптацией интенсивности самообучения на основе величины текущего шага поиска.

Предлагаемый способ заключается в том, что создают режим адаптивного случайного поиска в пространстве оптимизируемых параметров одновременно в нескольких параллельных каналах, основанный на формировании случайных входных шаговых воздействий на объект управления, распределенных по нормальному закону, математическое ожидание которых автоматически адаптируют в зависимости от сигнала, поступающего с выхода объекта по каналу обратной связи. Производят выбор наилучшего канала, который впоследствии будет являтся исходным каналом для создания режима адаптивного случайного поиска. Адаптация интенсивности самообучения в процессе поиска осуществляется на основе величины текущего шага поиска, т.е. коэффициент запоминания рассчитывают как отношение числа неудачных проб к общему количеству проб, проведенных до текущего момента оптимизации, параметр скорости обучения рассчитывают как отношение числа удачных проб к общему количеству проб, проведенных до текущего момента оптимизации.

На чертеже представлена блок-схема алгоритма, реализующего предлагаемый способ автоматической настройки многопараметрических систем автоматического управления на оптимальные условия (для определенности представлен случай минимизации функции качества).

Блок-схема включает в себя: 0 - блок начальных инициализаций, 1 - блок формирования шага в случайном направлении в пространстве оптимизируемых параметров в соответствии с нормальным законом распределения, 2 - блок запоминания сформированного шага, 3 - блок определения значения функции качества в новой точке пространства оптимизируемых параметров, 4 - блок определения знака приращения функции качества, 5 - блок выбора наилучшего из каналов, 6 - блок запоминания параметров наилучшего канала, 7 - блок условия для удачного шага, 10 - блок запоминания значения функции качества при удачном шаге, 8 и 11 - блоки адаптации распределения направления поисковых шагов и интенсивности самообучения в процессе настройки, 9 - блок формирования шага в обратном направлении при неудачном шаге, 12 - блок условий для окончания оптимизации.

Предлагаемый способ реализуют следующим образом. В пространстве оптимизируемых параметров из исходного состояния Xi делают шаг в случайном направлении в соответствии с нормальным законом распределения в нескольких независимых параллельных каналах (блоки 1, 2, 3, 4).

Производят выбор наилучшего канала, который впоследствии будет являтся исходным каналом. Если значение функции качества (задача минимизации) во всех паралельных каналах больше или равно нулю, то выбирают тот канал, у которого значение функции качества минимальное. Если есть отрицательные значения функции качества, то выбирают тот канал, функция качества которого имеет минимальное отрицательное значение (блок 5).

Qнаил(Х)=Qмин(X), из Qn(X), n=1... k,

где k - число независимых параллельных каналов,

Qнаил (Х) - значение функции качества наилучшего из параллельных каналов,

Qмин (Х) - минимальное значение функции качества из всех каналов.

Если значение функции качества в новом состоянии Q(Xi+1)=Qнаил(X) больше или равно значению функции качества в исходной точке Q(Xi), то есть случайная проба Ξ н оказалась неудачной (задача минимизации), то система возвращается в первоначальное состояние Xi, после чего снова формируют случайный шаг, отсчитанный из старого состояния, в каждом параллельном канале.

Если значение функции качества в новом состоянии Q(Xi+1)=Qнаил(X) меньше значения функции качества в исходной точке Q(Xi), то есть случайная проба Ξ н оказалась удачной (задача минимизации), то за исходное состояние берут новое Q(Xi+1), после чего снова формируют случайный шаг, отсчитанный из нового исходного состояния, в каждом параллельном канале.

Рекуррентное выражение для поискового алгоритма с нормально распределенными случайными пробами принимает вид:

где Q0i

=minQ(Xj), j=1,... ,i - наименьшее значение функции качества за i предыдущих шагов поиска,

Ξ н - единичный случайный вектор, распределенный по нормальному закону,

а - величина рабочего шага.

Алгоритм адаптации среднего квадратического отклонения направления нормально распределенных случайных шагов можно представить в виде следующего выражения:

где σ i - текущая величина среднего квадратического отклонения,

σ min и σ max - минимальное и максимальное значения среднего квадратического отклонения.

Адаптация распределения направления случайных шагов заключается в изменении их математического ожидания на основе знака приращения функции качества (блоки 8 и 11 на чертеже). Алгоритм непрерывной адаптации математического ожидания случайных шагов можно представить в виде следующего векторного рекуррентного соотношения:

Wi+1=kWi-δ Δ QiΔXi,

где W - математическое ожидание равномерно распределенных случайных шагов,

k - коэффициент запоминания (0≤ k≤ 1),

δ - параметр скорости обучения (0≤ δ ≤ 1).

Коэффициенты k и δ определяют интенсивность самообучения в процессе поиска.

При работе по этому алгоритму адаптации вектор W стремится перестроиться в направлении, обратном градиенту функции качества оптимизируемого объекта, то есть шаги поиска будут в среднем направлены в сторону быстрейшего уменьшения функции качества.

Адаптация интенсивности самообучения в процессе оптимизации на основе величины текущего шага (блоки 8 и 11 на чертеже) осуществляется с помощью следующих выражений для коэффициентов k и δ :

т.е.

где kуд и kнеуд - число удачных и неудачных проб, проведенных до текущего момента оптимизации.

Смысл этого алгоритма адаптации интенсивности самообучения заключается в следующем. Если в процессе поиска растет число удачных шагов kуд, а число неудачных шагов kнеуд уменьшается, т.е. функция качества Δ Q(X) движется к экстремуму, то величина рабочего шага а увеличивается, скорость обучения δ также растет, т.е. происходит интенсивное обучение на основе нового опыта, в то время как коэффициент запоминания k уменьшается, т.е. нет необходимости запоминать весь предыдущий накопленный опыт.

Если же в процессе поиска число удачных шагов kуд уменьшается, а число неудачных шагов kнеуд увеличивается, т.е. функция качества Δ Q(X) все ближе подходит к экстремуму, то величина рабочего шага а уменьшается, скорость обучения δ уменьшается, т.е. нет необходимости интенсивно обучаться, а коэффициент запоминания k увеличивается, т.е. запоминается весь предыдущий накопленный опыт.

Таблица 1МодельСреднее время поиска, шагов поискаВыигрыш в быстродействии, %ПрототипПаралельные каналы + усовершенствованная адаптация k и δ Полиномиальная27420027,01Центральная27419927,37Квадратичная30319535,64Функция Пауэла2357154234,58Погрешность Δ Qмин=0,1Таблица 2МодельСреднее время поиска, шагов поискаВыигрыш в быстродействии, %ПрототипПаралельные каналы + усовершенствованная адаптация k и δ Полиномиальная56942225,83Центральная56942126,01Квадратичная65240438,04Функция Пауэла6654397740,23Погрешность Δ Qмин=0,01

Полиномиальная модель:

Центральная модель:

Квадратичная модель:

где [А, Х] - скалярное произведение вектора параметрических коэффициентов A=(a1, a2, a3, a4)T и вектора входных координат Х=(x1, x2, x3, x4)T, аi=1, i=1... 4, bij - элементы матрицы:

Функция Пауэла:

Q(X)=(x1+10x2)2+5(x3-x4)4+(x2-2x3)4+10(x1-x4)4.

Функция Пауэла моделирует объект оптимизации с ярко выраженной овражностью функции качества.

Этот способ обладает универсальностью применения, что позволяет использовать его независимо от вида функции качества. Причем, если имеются определенные априорные данные о структуре функции качества, то не обязательно использовать всю информацию о неудачных и удачных пробах, а можно ограничиться данными за последние N шагов оптимизации. Однако N не должно быть слишком малым, иначе точность отыскания экстремума будет недостаточно высокой. Эксперименты на модельных функциях показали, что для большинства случаев оптимальным является N=100. Это достаточно для высокой мобильности алгоритма адаптации шага и отыскания экстремума с высокой точностью.

При проведении сравнительного тестирования использовался одинаковый для всех моделей набор из 100 начальных точек поиска, координаты которых представляли собой случайные равномерно распределенные числа в пределах от минус 10 до плюс 10. Цикл поиска экстремума для каждой начальной точки повторялся 100 раз.

Из таблиц видно, что максимальный выигрыш в производительности имел место при оптимизации модельного объекта, обладающего функцией качества с ярко выраженной овражностью (Функция Пауэла). Поскольку реальные объекты автоматического управления очень часто имеют овражные функции качества, то применение предлагаемого метода оказывается целесообразным для их эффективной оптимизации.

Достигаемый технический эффект от применения предлагаемого способа позволяет уменьшить потери на поиск и значительно повысить быстродействие отыскания экстремума функций качества объектов оптимизации: экспериментальные исследования, проведенные на модельных функциях, показали, что выигрыш в быстродействии предлагаемого способа по сравнению с прототипом составил от 25 до 40% в зависимости от вида модельной функции и точности нахождения экстремума (см. таблицы).

СПИСОК ЛИТЕРАТУРЫ

1. Растригин Л.А. Системы экстремального управления. М.: Наука, 1974, с.422-446.

2. Щедринов А.В., Кравченко А.Ю. Адаптивный случайный поиск // Приборы и системы. Управление, контроль, диагностика. – 2001, №6, с.39-42 (прототип).

Похожие патенты RU2251134C2

название год авторы номер документа
СПОСОБ АДАПТИВНОЙ АВТОМАТИЧЕСКОЙ САМОНАСТРОЙКИ МНОГОПАРАМЕТРИЧЕСКИХ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ НА ОПТИМАЛЬНЫЕ УСЛОВИЯ 2003
  • Щедринов А.В.
  • Карасёв В.Г.
RU2254602C2
СПОСОБ АДАПТИВНОЙ АВТОМАТИЧЕСКОЙ САМОНАСТРОЙКИ МНОГОПАРАМЕТРИЧЕСКИХ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ НА ОПТИМАЛЬНЫЕ УСЛОВИЯ 2000
  • Щедринов А.В.
  • Кравченко А.Ю.
RU2189069C2
СПОСОБ АВТОМАТИЧЕСКОЙ НАСТРОЙКИ МНОГОПАРАМЕТРИЧЕСКИХ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ НА ОПТИМАЛЬНЫЕ УСЛОВИЯ 2000
  • Щедринов А.В.
  • Кравченко А.Ю.
RU2189067C2
СПОСОБ АДАПТИВНОЙ АВТОМАТИЧЕСКОЙ НАСТРОЙКИ МНОГОПАРАМЕТРИЧЕСКИХ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ НА ОПТИМАЛЬНЫЕ УСЛОВИЯ 2000
  • Щедринов А.В.
  • Кравченко А.Ю.
RU2189068C2
МНОГОКАНАЛЬНЫЙ СТАТИСТИЧЕСКИЙ ОПТИМИЗАТОР 1972
SU326550A1
СПОСОБ ОПТИМИЗАЦИИ МНОГОМЕРНОГО ВЕКТОРА ПАРАМЕТРОВ УПРАВЛЕНИЯ СЛОЖНЫМИ СТОХАСТИЧЕСКИМИ СИСТЕМАМИ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ДЛЯ МНОГОМЕРНОГО ВЕКТОРА ВЫХОДНЫХ ПОКАЗАТЕЛЕЙ КАЧЕСТВА РАБОТЫ СИСТЕМЫ 2015
  • Ложкина Татьяна Николаевна
  • Лосев Герман Петрович
  • Маханек Елена Николаевна
RU2581015C1
Устройство экстремального регулирования 1982
  • Бобриков Эдуард Петрович
  • Иванов Леонтий Федорович
  • Михалев Александр Ильич
  • Левенец Игорь Григорьевич
SU1049865A1
Система автоматической оптимизации 1986
  • Мышляев Леонид Павлович
  • Фомин Николай Андреевич
  • Киселев Станислав Филиппович
  • Рыков Александр Семенович
  • Строков Иван Петрович
SU1310773A1
КОМАНДНЫЙ БЛОК ДЛЯ ЭКСТРЕМАЛЬНОГО РЕГУЛЯТОРА 2011
  • Сабанин Владимир Романович
  • Коптев Валерий Сергеевич
  • Кормилицын Владимир Ильич
RU2475797C1
Многоканальный статистический оптимизатор 1982
  • Сабуренко Борис Федорович
  • Хамитов Шамиль Шамухамедович
  • Черневский Игорь Николаевич
  • Рамазанов Равиль Шарипович
  • Солодкая Надежда Ивановна
  • Исмагилов Маулет Каримович
SU1076872A1

Реферат патента 2005 года СПОСОБ АДАПТИВНОЙ АВТОМАТИЧЕСКОЙ САМОНАСТРОЙКИ МНОГОПАРАМЕТРИЧЕСКИХ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ НА ОПТИМАЛЬНЫЕ УСЛОВИЯ

Изобретение относится к автоматической оптимизации многопараметрических объектов управления, обладающих одноэкстремальной функцией качества, основанной на каком-либо критерии оптимальности. Технический результат заключается в повышении быстродействия поиска. В соответствии со способом в пространстве оптимизируемых параметров из исходного состояния делают шаг в случайном направлении в соответствии с нормальным законом распределения в нескольких независимых параллельных каналах, производят выбор наилучшего канала на основании значения функции качества. Если значение функции качества в новом состоянии больше или равно значению функции качества в исходной точке, то система возвращается в первоначальное состояние, после чего снова формируют случайный шаг, отсчитанный из старого состояния, в каждом параллельном канале. Если значение функции качества в новом состоянии меньше значения функции качества в исходной точке, то за исходное состояние берут новое, после чего снова формируют случайный шаг, отсчитанный из нового исходного состояния, в каждом параллельном канале. 1 ил., 2 табл.

Формула изобретения RU 2 251 134 C2

Способ адаптивной автоматической самонастройки многопараметрических систем автоматического управления на оптимальные условия путем создания режима адаптивного случайного поиска в пространстве оптимизируемых параметров, основанный на формировании случайных входных шаговых воздействий на объект управления, математическое ожидание которых автоматически адаптируют в зависимости от сигнала, поступающего с выхода объекта по каналу обратной связи в соответствии с соотношением Wi+k=kWi-δ Δ QiΔXi, где W - математическое ожидание равномерно распределенных случайных шагов, k - коэффициент запоминания, δ - параметр скорости самообучения, Q - функция качества, Х - состояние объекта в пространстве оптимизируемых параметров, величину случайных входных шаговых воздействий адаптируют в соответствии с соотношением

где kуд и kнеуд - число удачных и неудачных проб, проведенных до текущего момента оптимизации, отличающийся тем, что поиск идет одновременно в нескольких параллельных каналах, затем в соответствии с условием Qнаил(Х)=Qмин(X), из Qn(X), n=1... k, (для минимизации), где k - число независимых параллельных каналов; Qнаил(Х) - значение функции качества наилучшего из параллельных каналов; Qмин(X) - минимальное значение функции качества из всех каналов, выбирают один наилучший канал, который впоследствии будет являться исходным каналом, а адаптацию интенсивности самообучения в процессе поиска осуществляют на основе величины текущего шага поиска в соответствии с выражениями

т.е.

Документы, цитированные в отчете о поиске Патент 2005 года RU2251134C2

СПОСОБ АДАПТИВНОЙ АВТОМАТИЧЕСКОЙ НАСТРОЙКИ МНОГОПАРАМЕТРИЧЕСКИХ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ НА ОПТИМАЛЬНЫЕ УСЛОВИЯ 2000
  • Щедринов А.В.
  • Кравченко А.Ю.
RU2189068C2
СПОСОБ АДАПТИВНОЙ АВТОМАТИЧЕСКОЙ САМОНАСТРОЙКИ МНОГОПАРАМЕТРИЧЕСКИХ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ НА ОПТИМАЛЬНЫЕ УСЛОВИЯ 2000
  • Щедринов А.В.
  • Кравченко А.Ю.
RU2189069C2
САМОНАСТРАИВАЮЩАЯСЯ СИСТЕМА КОМБИНИРОВАННОГО РЕГУЛИРОВАНИЯ 1989
  • Брусов Владимир Геннадьевич
  • Сухарев Евгений Александрович
  • Левичев Юрий Дмитриевич
  • Заброда Владимир Владимирович
  • Белянин Игорь Валентинович
  • Рунич Евгений Николаевич
  • Ольсевич Виктор Евстафьевич
  • Тарасенко Леонид Александрович
  • Дошлыгин Альберт Вячеславович
RU2022313C1
Способ размножения копий рисунков, текста и т.п. 1921
  • Левенц М.А.
SU89A1
Справочник по теории автоматического управления
Под ред
А.А.Красовского
- М.: Наука, 1987, с.637-639, 643-645.

RU 2 251 134 C2

Авторы

Щедринов А.В.

Карасёв В.Г.

Даты

2005-04-27Публикация

2003-04-02Подача