Изобретение относится к металлургии, а именно к способам получения сплавов тугоплавких металлов.
Известен способ (1) получения ниобийсодержащего материала путем алюмотермического восстановления в присутствии металла из группы железа, хрома, никеля или их оксидов при использовании в качестве исходного продукта оксифторида ниобия. В шихту так же добавляются оксид щелочноземельного металла или лития.
Недостатком процесса является низкий выход ниобия в сплав 86,3-90,7%, что недостаточно для дорогостоящего металла. Кроме того, сильно удорожает процесс применения соединений лития, т.к. он в виде фторида безвозвратно теряется с отвальным шлаком.
Известен (2, стр. 389-391) способ получения ниобийтанталсодержащих сплавов путем алюмотермического восстановления ниобийтанталсодержащих материалов (колумбита, танталита, пирохлора или их смесей) в присутствии хлората калия.
Недостатком данного способа является то, что, несмотря на добавление в некоторых случаях магния в шихту, процесс нестабилен, что характеризуется разбросом степени извлечения ниобия и постоянно низким выходом тантала в сплав (60-70%). Сплавы загрязнены нежелательными примесями (оловом, кремнием) и, что наиболее важно, углеродом.
Известен (2, стр.458-460) способ получения вольфрамсодержащих сплавов путем алюмотермического восстановления вольфрамсодержащих материалов в присутствии извести.
Недостатком этого способа является низкий общий выход металла, т.к. часть его улетучивается в процессе плавки в виде трехокиси, а часть (до 10%) - из-за недостаточно полного взаимодействия слитка со шлаком - приходится удалять с поверхности слитка вследствие большой загрязненности его примесями.
Известен (2, стр.316-319) способ получения молибденсодержащих сплавов путем алюмотермического восстановления молибденсодержащих материалов в присутствии извести и плавикового шпата.
Недостатком данного способа является невысокое извлечение металла из сплава, т.к. часть материала летит в виде оксидов в процессе плавки, а часть (8-9%) отсортировывают при очистке слитка, в котором содержание углерода все равно превышает 0,1%. Кроме того, пытаясь максимально восстановить молибден, получают слиток с завышенным (более 1%) содержанием алюминия.
Прототипом нашему изобретению является способ (3) получения лигатур тугоплавких металлов внепечным изотермическим восстановлением их оксидов (МО3, ZrO2, Nb2O5) в присутствии пероксидов щелочных металлов (СаO2, MgO2).
Недостатком данного способа является потери металлов и повышенное содержание в них примесей, в частности, углерода, источником которого являются пероксиды щелочноземельных металлов (вследствие технологии своего получения они содержат углекислотные группы).
Задача, на решение которой направлено данное изобретение, является повышение степени перехода металлов в сплав, снижение содержания примесей, в частности углерода, в конечном сплаве и снижение взрывоопасности процесса.
Задача решается способом получения сплавов тугоплавких металлов внепечным алюмотермическим восстановлением, включающим перемешивание сырья, содержащего оксиды тугоплавких металлов с оксидами щелочноземельных металлов, порошком алюминия и солью хлорноватой кислоты, размещение шихты в металлическом тигле, помещение на ее поверхности запальной смеси и плавку с получением слитка сплава, при этом в шихту вводят отходы от предыдущей плавки, а на поверхности шихты помещают запальную смесь, состоящую из пероксидов щелочноземельного металла и порошка алюминия, взятых в соотношении 4:1.
Скоротечность протекающих окислительно-восстановительных реакций (время плавки 1,0-1,5 мин), обеспеченное соотношением компонентов, участвующих в них, делает процесс взрывоопасным. Участие в качестве компонента отходов от предыдущей плавки, не изменяя необходимых соотношений и повышая степень извлечения металла в сплав, в то же время заставит часть выделяемого от экзотермических реакций тепла расходоваться на свое расплавление, что предотвращает перегрев шихты. Использование пероксидов только в запальной части предотвратит: во-первых, перегрев шихты, т.к. реакции с их участием наиболее экзотермичны, а во-вторых, снизит степень перехода примесей (главное, углерода) в сплав. После запалки шихты запальной смесью, содержащей пероксиды щелочноземельных металлов в соотношении с алюминием 4:1 (но в количествах, при которых содержащийся в них углерод удаляется в газовую фазу в начальный момент и не попадает в сплав) реакция идет с поверхности на дно тигля. Тем самым предотвращается угроза концентрации газов внутри шихтовой массы с дальнейшими взрывом или выбросом шихты. Энергетика достаточна для формирования слитка при максимальном выходе в него восстановленного металла достаточной степени чистоты.
Примеры осуществления.
Сырье, содержащее оксиды тугоплавких металлов, тщательно перемешивалось с оксидами щелочноземельных металлов, порошковым алюминием, хлоратом калия и отходами от предыдущей плавки. При необходимости разжижения шлака в процесс вводился плавиковый шпат. Шихта помещалась в металлический тигель. На ее поверхность помещалась запальная смесь, из тщательно перемешанных пероксидов щелочноземельных металлов и порошка алюминия, взятых в соотношении 4:1. Шихта через эту смесь запаливалась с помощью раскаленной нихромовой спирали. По окончании активной фазы и охлаждения, сплав отделялся от шлака.
Пример 1. Оксиды молибдена (МоO2), циркония (ZrO2) и кремния (SiO2) смешивались с порошком алюминия, хлоратом калия (КСlO3) и оксидом кальция (СаО) в присутствии фторида кальция (СаF2) и отходов от предыдущей плавки, взятых при соотношении:
Оксид молибдена (МоO2) 0,253
Оксид циркония (ZrO2) 0,166
Оксид кремния (SiO2) 0,036
Порошок алюминия 0,33
Оксид кальция (СаО) 0,020
Фторид кальция (CaF2) 0,004
Отходы от предыдущей плавки 0,125
Хлорат калия (КСlO3) 0,065
Запальная часть шихты состояла из пероксида кальция (СаO2) и порошка Аl марки ПА-4, взятых в соотношении 4:1. В результате плавки был получен сплав марки АЦМК, содержащий, вес.%: Мо - 39,0; Zr - 19,5; Si - 4,0; Al - 37,5, С-<0,01. Степень перехода молибдена в сплав составила 96,5%.
Пример 2. Оксиды молибдена (МоO2), вольфрама (WО3) и губчатый титан смешивались с порошком алюминия, хлоратом калия (КСlO3) и оксидом кальция (СаО) в присутствии фторида кальция (СаF2) и отходов от предыдущей плавки, взятых при соотношении:
Оксид молибдена (МоO2) 0,26
Оксид вольфрама (WO3) 0,09
Титановая губка 0,04
Порошок алюминия 0,35
Оксид кальция (СаО) 0,056
Фторид кальция (СаF2) 0,007
Отходы от предыдущей плавки 0,15
Хлорат калия (КСlO3) 0,058
Запальная часть шихты состояла из пероксида магния (МgO2) и порошка Аl марки ПА-4, взятых в соотношении 4:1. В результате плавки был получен сплав марки МФТА, содержащий, вес.%: Мо - 36,0; W - 17,5; Ti - 8,0; Al - остальное, С - <0,01. Степени перехода молибдена и вольфрама в сплав составили соответственно 96,2 и 95,7%.
Пример 3. Оксиды молибдена (МоO2), циркония (ZrO2) смешивались с порошком алюминия, хлоратом калия (КСlO3)и оксидом кальция (СаО) в присутствии фторида кальция (CaF2) и отходов от предыдущей плавки, взятых при соотношении:
Оксид молибдена (МоO2) 0,279
Оксид циркония (ZrO2) 0,208
Порошок алюминия 0,299
Оксид кальция (СаО) 0,03
Фторид кальция (CaF2) 0,004
Отходы от предыдущей плавки 0,125
Хлорат калия (КСlO3) 0,05
Запальная часть шихты состояла из пероксида бария (ВаO2) и порошка Аl марки ПА-4, взятых в соотношении 3,7:1. В результате плавки был получен сплав марки АЦМК, содержащий, вес.%: Мо - 43,0; Zr - 24,5; Al - 32,5, C - <0,01. Степень перехода молибдена в сплав составила 96,5%.
Пример 4. Оксиды молибдена (МоO2), хрома (Сr2O3) и кремния (SiO2) смешивались с порошком алюминия, хлоратом калия (КСlO3), железом и оксидом кальция (СаО) в присутствии фторида кальция (CaF2) и отходов от предыдущей плавки, взятых при соотношении:
Оксид молибдена (МоO2) 0,224
Оксид хрома (Сr2O3) 0,146
Оксид кремния (SiO2) 0,034
Оксид железа (Fe2O3) 0,027
Порошок алюминия 0,335
Оксид кальция (СаО) 0,027
Фторид кальция (CaF2) 0,015
Отходы от предыдущей плавки 0,170
Хлорат калия (KClO3) 0,021
Запальная часть шихты состояла из пероксида кальция (СаO2) и порошка Аl марки ПА-4, взятых в соотношении 4:1. В результате плавки был получен сплав марки АХМК, содержащий, вес.%: Мо - 33,5; Cr - 24,3; Si - 4,2; Al – 33,5; Fe – 5,2; C - <0,01. Степени перехода молибдена и хрома в сплав составили соответственно 95,5 и 95,0%.
Пример 5. Оксиды ниобия (Nb2O5) и кремния (SiO2)и отходы от предыдущей плавки смешивались с порошком алюминия, хлоратом калия (КСlO3) и оксидом кальция (СаО) в присутствии фторида кальция (СаF2), взятых в соотношении:
Оксид ниобия (Nb2O5) 0,410
Оксид кремния (SiO2) 0,001
Отходы от предыдущей плавки 0,144
Порошок алюминия 0,364
Оксид кальция (СаО) 0,042
Фторид кальция (CaF2) 0,005
Хлорат калия (КСlO3) 0,032
Запальная часть шихты состояла из пероксида кальция (СаO2) и порошка Аl марки ПА-4, взятых в соотношении 4:1. В результате плавки был получен сплав, содержащий, вес.%: Nb - 69,6; Si - 0,08; Al - 29,4, C - <0,01. Степень перехода ниобия в сплав составила 95,8%.
Таким образом, примеры осуществления изобретения демонстрируют положительный эффект от проведения процесса в присутствии солей хлорноватой кислоты: степени перехода ниобия, вольфрама, молибдена, хрома в сплав составили 95,0-96,8%, а тантала увеличился с 60-70 до 90,5%, содержания углерода в сплаве не превышали 0,01%. Процесс технологичен, быстротечен, экономически эффективен.
Список литературы
1. Патент США №10410378, С 22 В 34/24, “Способ получения ниобиевых сплавов”, заявитель Роберт А.Густисон, Кавеки Берилко Индастриз, опубл.27.04.79, заявка №272764201, з. 28.04.78, бюлл. №33 от 07.09.83.
2. Р.Дуррер, Г.Фолькерт, "Металлургия ферросплавов", М., Металлургия, 1976 г.
3. Авторское свидетельство №498345 "Способ получения лигатур тугоплавких металлов внепечным алюмотермическим восстановлением", класс C 22 D 7/06, авторы, Н.Дубровский и др., з-ль Пышминский опытный завод “Гиредмет”, заявлено 12.01.73 г., заявка №1871175/22-1, опубл.21.03.75 г.
Изобретение относится к металлургии, в частности к получению сплавов тугоплавких металлов внепечным алюмотермическим восстановлением. Техническим результатом является повышение степени перехода металлов в сплав, снижение содержания примесей, в частности углерода, и снижение взрывоопасности процесса. Способ включает приготовление шихты из соединения тугоплавкого металла, алюминия и оксидов щелочноземельных металлов, размещение шихты в металлический тигель помещение на ее поверхности запальной смеси из пероксида щелочноземельного металла и алюминия, восстановление и плавку. При этом в шихту дополнительно вводят отходы от предыдущей плавки и соль хлорноватой кислоты, а соотношение порошка алюминия к пероксиду щелочноземельного металла в запальной смеси составляет 4:1.
Способ получения сплавов тугоплавких металлов внепечным алюмотермическим восстановлением, включающий перемешивание сырья, содержащего оксиды тугоплавких металлов, с оксидами щелочноземельных металлов, порошком алюминия и солью хлорноватой кислоты, размещение шихты в металлическом тигле, помещение на ее поверхности запальной смеси и плавку с получением слитка сплава, отличающийся тем, что в шихту вводят отходы от предыдущей плавки, а на поверхности шихты помещают запальную смесь, состоящую из пероксидов щелочноземельного металла и порошка алюминия, взятых в соотношении 4:1.
US 4164417 А, 14.08.1979 | |||
Способ получения лигатур тугоплавких металлов | 1973 |
|
SU498345A1 |
СПОСОБ ПОЛУЧЕНИЯ СПЛАВОВ НИОБИЯ | 1992 |
|
RU2022043C1 |
GB 1294293 A, 25.10.1972 | |||
Гербицидная композиция | 1975 |
|
SU612607A3 |
Экструзионная щелевая головка дляполива кинофотопленок | 1974 |
|
SU509447A1 |
Даты
2005-07-27—Публикация
2004-04-02—Подача