Способ получения полуфабриката из сплава на основе ниобия Российский патент 2019 года по МПК C22C27/02 C22B9/20 C22F1/18 

Описание патента на изобретение RU2680321C1

Изобретение относится к цветной металлургии, конкретно к способам получения ниобиевых сплавов.

Из уровня техники известен способ получения ниобиевого сплава, включающий приготовление шихты и двойной электродуговой переплав в вакуумной печи со ступенчатым кристаллизатором, при этом первый переплав проводят в кристаллизаторе меньшего диаметра, а полученный слиток переплавляется второй раз в кристаллизаторе большего диаметра (Г. В. Захарова и др. Ниобий и его сплавы. Металлургиздат, Москва, 1961, стр. 67).

Данный способ не обеспечивает высокой степени равномерности распределения легирующих и, как следствие, высокого уровня свойств сплава.

Известен способ получения ниобийтанталсодержащих сплавов путем алюмотермического восстановления ниобийтанталсодержащих материалов (колумбита, танталита, пирохлора или их смесей) в присутствии хлората калия. (Р.Дуррер, Г.Фолькерт, "Металлургия ферросплавов", М., Металлургия, 1976 г., стр. 389-391)

Недостатком данного способа является недостаточный уровень свойств сплава, а также недостаточно однородная структура сплава.

Известен способ получения жаропрочного сплава на основе ниобия, включающий приготовление шихты, содержащей кремний, алюминий, титан, ниобий и по меньшей мере один элемент, выбранный из хрома, молибдена и вольфрама и загрузку шихты в керамический тигель. Выплавку проводят при 1800-2100°С в вакуумной индукционной печи в вакууме или среде инертного газа, разливку расплава в нагретую инертную форму. По крайней мере за 10-15 минут перед разливкой в расплав вводят по меньшей мере один активный элемент, выбранный из циркония, гафния и иттрия. (патент RU 2618038 С2, С22С1/02, С22В9/22, С22С27/02, 02.05.2017).

Полученные слитки обладают равноосной структурой и однородным химическим составом по всему объему слитка, однако уровень однородности недостаточен для получения высокого уровня свойств сплава.

Из уровня техники известен выбранный в качестве прототипа способ получения ниобиевого сплава (CN , включающий приготовление шихты и формирование полос ниобий-вольфрам-молибден, укладку множества ниобий-вольфрам-молибден металлических полосок и первого слоя чистого циркония в середине сложенных металлических полос и сварки с формированием плавящегося электрода. Затем получают полуфабрикат в виде слитка, дважды выполняя вакуумную электронно-лучевую плавку плавящегося электрода. К наружной поверхности упомянутого полуфабриката плотно прикрепляют полоски чистого циркония для того чтобы получить расходуемый электрод для электродуговой плавки и проводят двойной вакуумно-дуговой переплав с получением слитка сплава ниобий-вольфрам-молибден- цирконий.

Недостатком известного способа является недостаточно равномерное распределение легирующих в ниобиевой основе, что не позволяет достигнуть необходимого уровня высокотемпературных свойств.

Задачей настоящего изобретения является разработка способа получения ниобиевого сплава, который позволит получить сплав, обладающий высокими свойствами при высоких температурах.

Поставленная техническая задача достигается тем, что в способе получения полуфабриката из сплава на основе ниобия, включающем приготовление шихты, электронно-лучевую плавку и вакуумно-дуговую плавку, шихту готовят из оксидов ниобия, молибдена и вольфрама в количествах, определяемых маркой сплава, и алюминия, взятого с избытком 1-15 % от стехиометрического количества, проводят алюминотермическое восстановление, полученную лигатуру дробят, осуществляют электронно-лучевой переплав дробленой лигатуры в слиток на установке с горизонтально расположенным кристаллизатором и последующий двойной или тройной электронно-лучевой переплав полученного слитка на установке с вертикально расположенным кристаллизатором, после чего осуществляют вакуумно-дуговой переплав круглого слитка на установке с расходуемым электродом с одновременным введением циркония и углерода и последующую горячую и холодную обработку давлением с суммарной деформацией не менее 20% и промежуточными отжигами.

Техническим результатом является улучшение равномерности распределения вольфрама и молибдена в ниобиевой основе, повышение термической стабильности сплава при высоких температурах, снижение скорости ползучести при температурах выше 1000 °С, повышение пластичности без потери прочности.

Введение алюминия в избыточном относительно стехиометрического количестве обеспечивает глубокое рафинирование материала при последующих переплавах, что приводит к повышению пластичности без потери прочности.

Введение тугоплавких легирующих вольфрама и молибдена в виде оксидов на стадии алюминотермического восстановления, а циркония и углерода на стадии вакуумно-дугового переплава обеспечивает равномерность их распределения в ниобиевой основе. При этом введение циркония и углерода на первой стадии ухудшает их распределение в материале, образуются грубые (размером в десятки-сотни мкм) вторые фазы (карбиды и интерметаллиды), которые в такой форме перестают работать как упрочнители. Размеры образующихся вторых фаз должны быть менее 1 мкм, что происходит, когда цирконий и углерод "вытягивают на себя" W и Мо из уже сформировавшегося твердого раствора.

Все вышеизложенное приводит к формированию равномерного твердого раствора Nb-W-Mo наноуровня (ни один из физических методов не видит отдельно вольфрам и молибден), что способствует повышению термической стабильности сплава и снижению скорости ползучести на 30%.

Проведение двойного или тройного вакуумно-дугового переплава обеспечивает очистку сплава от примесей, при этом количество стадий переплава зависит от темпа их удаления.

Обработка давлением с промежуточными отжигами проводится для снятия напряжений и формирования мелкозернистой структуры ниобиевого сплава, поскольку сплав с мелкозернистой структурой будет иметь наиболее высокое удлинение и ударную вязкость. При этом следует сказать, что степень деформации материала менее 20% не позволит сформировать однородную мелкозернистую структуру и, следовательно, получить конечный продукт с высокой пластичностью.

Пример осуществления изобретения

Для получения полуфабриката из ниобиевого сплава Нб5В2МЦ готовят шихту, содержащую:

оксид ниобия Nb2O5 - 120-122 кг,

оксид молибдена МоО3 – 3,1-3,3 кг,

оксид вольфрама WО3 – 5,2-5,4 кг,

алюминий порошок АПЖ – 54-56 кг.

Смешивание проводят в смесителе с эксцентричной осью вращения объемом 250 дм3 в течение 40-60 минут, в смеситель кроме шихты загружают 10-15 кг цилиндров диаметром 10-15 и высотой 10-15 мм из ниобия или ниобиевого сплава.

Алюминотермическое восстановление осуществляют в стальном или чугунном реакторе с медным кристаллизатором. В реактор утрамбовывают 180-185 кг шихты, затем реактор устанавливают в водоохлаждаемую герметичную камеру, в верхней части шихты размещают 20-30 г запальной смеси из алюминиевого порошка и марганцевокислого калия и запал в виде спирали из алюминиевой проволоки. После оснащения камера откачивают до форвакуума 0,02-0,05 бар и поджигают шихту подачей на запальную спираль напряжения 12 В. Реакция горения шихты происходит в течение 7-12 минут, при этом давление в камере повышается до 0,5-0,8 бар. После окончания реакции камера охлаждают в течение 3-4 часов и извлекают реактор из камеры. После извлечения реактор разбирают, извлекают слиток и шлак. Слиток дробится сначала на куски размером 100-200 мм вручную, затем на щековой дробилке до фракции 10-20 мм, которая передается на 1-й электронно-лучевой переплав (ЭЛП).

Первый ЭЛП дробленной лигатуры в слиток проводят на установке с горизонтально расположенным кристаллизатором. Кусочки лигатуры насыпают слоем толщиной 20-30 мм в медный водоохлаждаемый кристаллизатор с внутренними размерами 1200х200х30 мм и производится их переплав в течение 2-2,5 часов сканирующим электронным лучом с параметрами 18-20 кВ/3,5-4 А и щелевой фокусировкой. Слиток проплавляют сначала с одной стороны, затем охлаждают 2-3 часа, переворачивают и проплавляют с другой стороны, затем снова охлаждают и передают на 2-й и последующие ЭЛП.

Второй и последующие ЭЛП слитков проводят на установке с вертикально расположенным кристаллизатором. Слитки связывают ниобиевой проволокой по 3 шт, устанавливаются на загрузочный узел и подаются под электронный луч с параметрами 22-24 кВ/8,5-10А с цилиндрической фокусировкой. Расплав стекает в медный водоохлаждаемый кристаллизатор Ф 120-160мм, часть энергии луча поддерживает в кристаллизаторе уровень расплава 15-20 мм, при этом затвердевшая часть слитка непрерывно вытягивается вниз. В процессе переплавов контролируют содержания кислорода, кремния и железа, переплавы заканчивают при достижении содержания 0,005-0,008% по каждой из названных примесей.

Вакуумно-дуговой переплав (ВДП) слитка последнего ЭЛП проводят на установке с расходуемым электродом в медный водоохлаждаемый кристаллизатор Ф120-160 мм. К слитку средней массой 65-70 кг ниобиевой проволокой привязывают 0,5-0,7 кг ленты сечением 2х10 мм из йодидного циркония и 50-70 гр ткани из графитовых волокон. Плавка ведется на режиме 25-28 В / 11-13 кА, время проплавления слитка массой 70 кг составляет 40-55 минут. После окончания плавки слиток охлаждают в кристаллизаторе 2-3 часа.

Для получения полуфабриката из слитка проводят горячее прессование с температуры 1450-1500С, нагрев на воздухе за 40-50 минут, скорость прессования 28-32 мм/с на круглый или плоский пруток со степенью деформации 70-75%. После чего осуществляют холодную прокатку горячепрессованного прутка/сутунки с деформацией 15-20% за проход и промежуточными вакуумными отжигами при 1200-1300С в течение 1-1,5 час через каждые 3-5 проходов. Финишный вакуумный отжиг проводят при 1350-1400С в течение 1,5-2 час.

Механические свойства полученного материала (марка Нб5В2МЦ, лист толщиной 5 мм):

- при 20°С: предел прочности σв = 450-490 МПа, предел текучести σ0,2= 350-380 МПа, относительное удлинение δs = 30-45%;

- при 1200°С: σв =120-140 МПа, σ0,2= 110-120 МПа, δs = 55-65%;

- при 1500°С: σв =50-70 МПа, σ0,2= 45-50 МПа, δs = 100-110%

- при 1700°С: σв =35-40 МПа, σ0,2= 30-35 МПа, δs = 130-150%

- длительная прочность: при 1200°С σ100 = 50-60 МПа, при 1500°С – 15-20 МПа.

Похожие патенты RU2680321C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ИНТЕРМЕТАЛЛИДНЫХ СПЛАВОВ НА ОСНОВЕ АЛЮМИНИДА ТИТАНА С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ НИОБИЯ 2014
  • Александров Александр Владимирович
  • Андреев Андрей Владиславович
  • Безуглов Александр Юрьевич
  • Волков Игорь Львович
  • Кодинцев Виктор Васильевич
  • Ночовная Надежда Алексеевна
  • Скворцова Светлана Владимировна
  • Смирнов Владимир Григорьевич
  • Токарев Константин Александрович
RU2576288C1
СПОСОБ ПОЛУЧЕНИЯ СЛИТКОВ ТАНТАЛА 2002
  • Дробышев В.А.
  • Зурабов В.С.
  • Дубиков А.А.
  • Ведерников Г.П.
  • Золотарев А.Б.
  • Панцырный В.И.
  • Чистов Ю.И.
  • Шиков А.К.
  • Ахтонов С.Г.
  • Безуглов А.Ю.
  • Ильенко Е.В.
  • Клюпа Е.А.
  • Лосицкий А.Ф.
  • Рождественский В.В.
  • Скрябин Е.А.
  • Черемных Г.С.
RU2204618C1
Способ получения полуфабрикатов из жаропрочного сплава Х25Н45В30 2019
  • Шильников Евгений Владимирович
  • Кабанов Илья Викторович
  • Муруева Анастасия Владимировна
  • Урин Сергей Львович
  • Ильинский Алексей Игоревич
  • Троянова Юлия Александровна
  • Нефедова Ольга Геннадьевна
  • Гаврилов Алексей Александрович
  • Волков Владимир Викторович
RU2719051C1
СПОСОБ ПОЛУЧЕНИЯ СЛИТКА ПСЕВДО β-ТИТАНОВОГО СПЛАВА, СОДЕРЖАЩЕГО (4,0-6,0)% Аl, (4,5-6,0)% Мo, (4,5-6,0)% V, (2,0-3,6)% Cr, (0,2-0,5)% Fe, (0,1-2,0)% Zr 2010
  • Тетюхин Владислав Валентинович
  • Левин Игорь Васильевич
RU2463365C2
СПОСОБ ПОЛУЧЕНИЯ СЛИТКОВ 2003
  • Иванов А.В.
RU2263721C2
Способ получения слитков сплава на основе титана 2017
  • Нестерова Нина Васильевна
  • Осипов Сергей Юрьевич
  • Орлов Владислав Константинович
  • Юрьев Александр Андреевич
RU2675010C1
СПОСОБ РАФИНИРОВАНИЯ СПЛАВОВ НА ОСНОВЕ ТАНТАЛА 2012
  • Ермаков Александр Владимирович
  • Панфилов Александр Михайлович
  • Игумнов Михаил Степанович
  • Миленина Ирина Михайловна
  • Никифоров Сергей Владимирович
  • Терентьев Егор Виленович
RU2499065C1
СПОСОБ ПОЛУЧЕНИЯ ЖАРОПРОЧНОГО СПЛАВА НА ОСНОВЕ НИОБИЕВОЙ МАТРИЦЫ С ИНТЕРМЕТАЛЛИДНЫМ УПРОЧНЕНИЕМ 2015
  • Каблов Евгений Николаевич
  • Мин Павел Георгиевич
  • Вадеев Виталий Евгеньевич
  • Евгенов Александр Геннадьевич
  • Светлов Игорь Леонидович
  • Крамер Вадим Владимирович
RU2595084C1
СПОСОБ ПЛАВКИ ХИМИЧЕСКИ АКТИВНЫХ МЕТАЛЛОВ И СПЛАВОВ НА ИХ ОСНОВЕ 2012
  • Волков Анатолий Евгеньевич
RU2630138C2
Способ получения лигатуры цирконий-ниобий 2022
  • Новиков Владимир Владимирович
  • Кабанов Александр Анатольевич
  • Филатова Надежда Константиновна
  • Головин Антон Владимирович
  • Мартынов Андрей Алексеевич
  • Зиганшин Александр Гусманович
  • Бекмансуров Рустам Фанильевич
RU2796507C1

Реферат патента 2019 года Способ получения полуфабриката из сплава на основе ниобия

Изобретение относится к области металлургии и может быть использовано при получении полуфабрикатов из ниобиевых сплавов. Cпособ включает приготовление шихты из оксидов ниобия, молибдена и вольфрама в количествах, определяемых маркой сплава, и алюминия, взятого с избытком 1-15% от стехиометрического количества. Проводят алюминотермическое восстановление, полученную лигатуру дробят, осуществляют электронно-лучевой переплав на установке с горизонтально расположенным кристаллизатором с получением слитка, при этом слиток проплавляют сначала с одной стороны, охлаждают, переворачивают и проплавляют с другой стороны, после чего охлаждают и передают на последующий двойной или тройной электронно-лучевой переплав слитка на установке с вертикально расположенным кристаллизатором. Затем проводят вакуумно-дуговой переплав слитка на установке с расходуемым электродом с одновременным введением в сплав циркония и углерода. Полуфабрикат из слитка получают путем горячей и холодной обработки давлением с суммарной деформацией не менее 20% и промежуточными отжигами. Изобретение позволяет получить ниобиевый сплав, обладающий высокотемпературными свойствами. 1 пр.

Формула изобретения RU 2 680 321 C1


Способ получения полуфабриката из сплава на основе ниобия, включающий приготовление шихты, электронно-лучевую плавку и вакуумно-дуговую плавку, отличающийся тем, что шихту готовят из оксидов ниобия, молибдена и вольфрама в количествах, определяемых маркой сплава, и алюминия, взятого с избытком 1-15% от стехиометрического количества, проводят алюминотермическое восстановление, полученную лигатуру дробят, осуществляют электронно-лучевой переплав на установке с горизонтально расположенным кристаллизатором с получением слитка, при этом слиток проплавляют сначала с одной стороны, охлаждают, переворачивают и проплавляют с другой стороны, после чего охлаждают и передают слиток на последующий двойной или тройной электронно-лучевой переплав на установке с вертикально расположенным кристаллизатором, затем проводят вакуумно-дуговой переплав слитка на установке с расходуемым электродом с одновременным введением в сплав циркония и углерода, после чего проводят горячую и холодную обработку давлением с суммарной деформацией не менее 20% и промежуточными отжигами.

Документы, цитированные в отчете о поиске Патент 2019 года RU2680321C1

СПОСОБ ПОЛУЧЕНИЯ ЖАРОПРОЧНОГО СПЛАВА НА ОСНОВЕ НИОБИЯ 2015
  • Каблов Евгений Николаевич
  • Мин Павел Георгиевич
  • Вадеев Виталий Евгеньевич
  • Каблов Дмитрий Евгеньевич
RU2618038C2
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОДУКТА ПЕРЕРАБОТКИ, ВКЛЮЧАЮЩЕГО СОДЕРЖАЩИЙ КРЕМНИЙ СПЛАВ НИОБИЯ И ТАНТАЛА (ВАРИАНТЫ), ЛУНКИ ГЛУБОКОЙ ВЫТЯЖКИ И МИШЕНИ ИОННОГО РАСПЫЛЕНИЯ, ПОЛУЧЕННЫЕ ИЗ НЕГО 2005
  • Эймон Пол Р.
  • Мозер Керт Д.
  • Дорвел Роберт А.
  • Болтер Райан
RU2416656C2
СПОСОБ ПОЛУЧЕНИЯ СЛИТКОВ НИОБИЯ ВЫСОКОЙ ЧИСТОТЫ С РЕГЛАМЕНТИРОВАННЫМ УРОВНЕМ ЭЛЕКТРОФИЗИЧЕСКИХ СВОЙСТВ 2003
  • Дробышев В.А.
  • Воробьева А.Е.
  • Зурабов В.С.
  • Чистов Ю.И.
  • Шиков А.К.
  • Ахтонов С.Г.
  • Ильенко Е.В.
  • Клюпа Е.А.
  • Лосицкий А.Ф.
  • Панцырный В.И.
  • Черемных Г.С.
RU2247164C2
JP 3247727 A, 05.11.1991.

RU 2 680 321 C1

Авторы

Сёмин Александр Анатольевич

Даты

2019-02-19Публикация

2018-01-31Подача