СПОСОБ ОПТИМИЗАЦИИ РАБОТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ Российский патент 2005 года по МПК F02B75/06 F02D35/00 

Описание патента на изобретение RU2260131C2

Изобретение относится к области машиностроения, в частности к двигателям внутреннего сгорания, и может быть использовано в двигателестроении.

Известен способ определения технического состояния двигателя внутреннего сгорания (ДВС) путем нахождения зависимости индикаторного давления в цилиндре двигателя от угла поворота коленчатого вала (см. патент РФ 2078324, кл. G 01 М 15/00, 1997), при этом данный способ основан на непрерывном измерении в фазе текущих значений угловых ускорений коленчатого вала двигателя, генерировании функции инерционной составляющей ускорения, а также на взаимной зависимости активных сил в цилиндре с крутящим моментом и выделении составляющей ускорения, отражающей рабочие процессы в цилиндре, с вычислением индикаторной диаграммы работы цилиндра.

Недостатком указанного выше способа является необходимость установки сложных устройств для измерения неравномерности частоты вращения коленчатого вала и, следовательно, его дороговизна. Кроме того, данный способ не обладает высокой точностью, так как индикаторная диаграмма получается расчетным путем.

Наиболее близким к изобретению по технической сущности и достигаемому результату является способ определения режима работы двигателя внутреннего сгорания, заключающийся в том, что определяют скорость и ускорение поршня и строят индикаторную диаграмму силы, действующей на поршень, в зависимости от угла поворота шейки коленчатого вала вокруг его оси вращения или снимают тепловые характеристики работы двигателя внутреннего сгорания и на основании теплового расчета строят указанную выше индикаторную диаграмму и затем определяют силы инерции возвратно-поступательного движения масс поршня и кривошипно-шатунного механизма каждого цилиндра двигателя внутреннего сгорания в зависимости от ускорения или замедления поршня (см. Колчин А.И., Демидов В.П. Расчет автомобильных и тракторных двигателей. - М.: Высшая школа. - 1980. - C.117-123).

При этом принимается, что коленчатый вал вращается с постоянной угловой скоростью ω. Газовые нагрузки на поршень в расчете не учитываются. Данное допущение позволяет рассматривать все кинематические величины в виде функциональной зависимости от угла поворота коленчатого вала, который при ω=const пропорционален времени.

Вращение коленчатого вала с постоянной угловой скоростью может быть обеспечено за счет ускорения или замедления движения поршня вдоль цилиндра и, вызванного его движением, перемещением шатуна вдоль оси цилиндра и отклонением шатуна от этой оси, при этом происходит изменение скорости поступательного движения поршня на величину dv за время dt.

Силы инерции возвратно-поступательного движения масс Pj, действующие в кривошипно-шатунных механизмах ДВС, рассматриваются как результат ускорения или замедления поршня, связанного с кинематикой кривошипно-шатунного механизма. Аналогично ускорению поршня силы инерции возвратно-поступательного движения масс Pj обычно представлены в виде суммы сил инерции первого Pj1 и второго Рj2 порядков

Рjj1j2

Недостатком этого способа расчета режима работы ДВС, в частности расчета ускорения поршня и сил инерции возвратно-поступательно движущихся масс, является то, что в нем не учитываются силы инерции возвратно-поступательно движущихся масс для установившегося режима работы двигателя как результат действия сил давления газов на поршень в зависимости от угла поворота коленчатого вала, все шейки которого вращаются в одном направлении с постоянной угловой скоростью.

Задачей предлагаемого способа является повышение кпд двигателя и его моторесурса путем оптимизации режима работы двигателя внутреннего сгорания.

Указанная задача решается за счет того, что в способе оптимизации работы двигателя внутреннего сгорания вначале определяют скорость и ускорение поршня и строят индикаторную диаграмму силы, действующей на поршень, в зависимости от угла поворота шейки коленчатого вала вокруг его оси вращения или снимают тепловые характеристики работы двигателя внутреннего сгорания и на основании теплового расчета строят указанную выше индикаторную диаграмму, а затем определяют силы инерции возвратно-поступательного движения масс поршня и кривошипно-шатунного механизма каждого цилиндра двигателя внутреннего сгорания в зависимости от ускорения или замедления поршня, при этом измеряют величину давления продуктов сгорания топлива на поршень и изменение величины давления на поршень продуктов сгорания топливной смеси в зависимости от угла поворота шейки коленчатого вала вокруг оси вращения последнего, с учетом измеренных величин давления определяют величину сил возвратно-поступательного перемещения движущихся масс поршня и кривошипно-шатунного механизма двигателя внутреннего сгорания в направлении по оси цилиндра двигателя внутреннего сгорания с построением индикаторной диаграммы, после чего для каждого полуоборота коленчатого вала определяют среднюю суммарную тангенциальную силу (Тср), действующую на кривошип, в зависимости от крутящего момента (Мкр.ср.) на коленчатом валу:

Тсркр.ср./R,

где R - радиус кривошипа коленчатого вала, после чего определяют средние суммарные силы вдоль оси поршня и кривошипно-шатунного механизма (P) в зависимости от угла α поворота коленчатого вала и угла β отклонения шатуна от оси цилиндра:

P=Tcp/sin(α+β)/cosβ,

и затем на основании полученных результатов для каждого полуоборота коленчатого вала определяют суммарную величину тангенциальной силы на кривошипе коленчатого вала, суммарную величину силы давления продуктов сгорания топливной смеси в цилиндре и суммарную силу инерции возвратно-поступательного перемещения масс поршня и кривошипно-шатунного механизма для каждого цилиндра как разницу между средними суммарными силами P для средней суммарной тангенциальной силы Тср и суммарными силами давления продуктов сгорания топливной смеси в зависимости от угла поворота коленчатого вала, после чего устанавливают на валу двигателя маховик и обеспечивают вращение коленчатого вала с постоянной угловой скоростью, при этом размер маховика определяют из условия, что создаваемый им суммарный крутящий момент сопротивления вращению коленчатого вала равен суммарному крутящему моменту от ускорения вращения коленчатого вала под действием рассчитанной выше суммарной силы инерции.

Силы давления газов, действующие на площадь поршня, для упрощения динамического расчета заменяют одной силой, направленной по оси цилиндра и приложенной к оси поршневого пальца. Ее определяют для каждого момента времени (угла поворота коленчатого вала) по действительной индикаторной диаграмме, снятой с двигателя, или по индикаторной диаграмме, построенной на основании теплового расчета (обычно для номинальной мощности и соответствующей ей частоты вращения коленчатого вала).

Определяя в любой момент времени давление газов Рг и учитывая давление на поршень со стороны картера Р0 (приблизительно равное атмосферному давлению), сила давления газов на поршень рассчитывается как Р=Рг0.

Согласно индикаторной диаграмме двигателя под действием различных по значению сил давления газов происходит ускорение или замедление возвратно-поступательно движущихся масс.

При ускорении или замедлении поршневой группы и верхней головки шатуна начинает ускоренно или замедленно вращаться коленчатый вал двигателя. В этом случае должна преодолеваться не только инерция возвратно-поступательно движущихся масс, но и инерция вращающихся масс.

Между элементарным поступательным перемещением поршня на величину ds и элементарным углом поворота dα коленчатого вала с радиусом кривошипа R существует простое соотношение ds=R·dα.

Если перемещение ds происходит за промежуток времени dt, то отношение между скоростью поступательного движения поршня V=ds/dt и угловой скоростью коленчатого вала ω=dα/dt запишется в виде V=R·ω.

Если же за время dt произошло изменение скорости поступательного движения поршня на величину dv, а угловой скорости вращения коленчатого вала на величину dω, то соотношение между ускорением поступательного движения поршня j=dv/dt и угловым ускорением коленчатого вала ε=dω/dt выразится как j=R·ε.

Таким образом, при ускорении поступательного движения поршня коленчатый вал приобретает угловое ускорение, равное ε=j/R.

Для создания углового ускорения ε вращающегося коленчатого вала, имеющего момент сил инерции J0 всех движущихся масс двигателя, приведенных к оси коленчатого вала, требуется приложение крутящего момента М=ε·J0.

При ускорении поршня под действием газовых сил крутящий момент М рассматривается как M=j·J0/R.

Для создания такого крутящего момента к окружности радиуса кривошипа коленчатого вала должна быть приложена сила Рjk=М/R=j·J0/R2.

Индикаторный крутящий момент двигателя Мкр в каждый момент времени уравновешивается суммарным моментом сопротивления Мсопр и моментом сил инерции J0 всех движущихся масс двигателя, приведенных к оси коленчатого вала. Эта взаимосвязь выражается уравнением Мкрсопр+ε·J0.

Для установившегося режима работы двигателя, когда все шейки коленчатого вала вращаются в одном направлении со средним индикаторным суммарным крутящим моментом Мкр.ср при среднем значении суммарной тангенциальной силы Тср, преодолевая силы инерции с ускорением или замедлением возвратно-поступательного перемещения движущихся масс под действием сил давления газов Мсопркр.ср, при этом ε·J0=0. Таким образом, при выполнении указанного выше условия будет достигнуто вращение коленчатого вала с постоянной угловой скоростью ω=const.

Действительный эффективный крутящий момент, снимаемый с вала двигателя, имеющего механический кпд ηм, рассчитывается как Mg=Мкр.ср.·ηм.

Для выполнения условия М=ε·J0=0 в двигатель вводится маховик, основное назначение которого - обеспечение равномерности вращения коленчатого вала и создание необходимых условий для трогания машины с места.

Вращение с постоянной угловой скоростью коленчатого вала двигателя достигается при среднем индикаторном суммарном крутящем моменте Мкр.ср и под действием суммарной тангенциальной силы Тср, которые являются следствием воздействия изменяющихся по величине и направлению сил инерции возвратно-поступательно движущихся масс в зависимости от суммарных сил давления газов для каждого полуоборота коленчатого вала и цилиндра.

В свою очередь для определения силы инерции возвратно-поступательно движущихся масс, изменяющихся по величине и направлению в зависимости от суммарных сил давления газов для каждого полуоборота коленчатого вала и цилиндра, определяются средние значения суммарных сил вдоль оси поршня и кривошипно-шатунного механизма P=Tср/sin(α+β)/cosβ, в зависимости от угла поворота коленчатого вала. Значения суммарных тангенциальных сил определяются для каждого полуоборота коленчатого вала и цилиндра в зависимости от угла поворота коленчатого вала, вращающегося с постоянной угловой скоростью.

Как видим, анализ работы одноцилиндрового двигателя подтвердил, что неправомерно рассматривать силы инерции возвратно-поступательно движущихся масс только в зависимости от угла поворота коленчатого вала при постоянных других параметрах. Их надо рассматривать как результат действия сил давления газов в зависимости от угла поворота коленчатого вала с достижением вращения коленчатого вала с постоянной скоростью в одном направлении.

Расчеты четырехцилиндрового дизельного двигателя с воздушным охлаждением Д145Т показал, что реальные силы инерции возвратно-поступательно движущихся масс, поддерживающие вращение всех шеек коленчатого вала в одном направлении с постоянной угловой скоростью под действием разных по величине сил давления газов, достигают в первом цилиндре максимума со знаком минус на третьем полуобороте коленчатого вала в начале такта - рабочий ход; во втором цилиндре достигают максимума со знаком минус на третьем полуобороте коленчатого вала в начале такта - выхлоп и максимума со знаком плюс на втором полуобороте в конце такта - рабочий ход; в третьем цилиндре достигают максимума со знаком минус на третьем полуобороте коленчатого вала в начале такта - сжатие и максимума со знаком плюс на втором полуобороте в конце такта - всасывание; в четвертом цилиндре достигают дважды максимума со знаком минус в начале тактов - выхлоп и сжатие соответственно на втором и четвертом полуоборотах коленчатого вала и дважды максимума со знаком плюс в конце тактов - рабочий ход и всасывание соответственно на первом и третьем полуоборотах коленчатого вала.

Наблюдается характерное для каждого цилиндра и полуоборота коленчатого вала распределение сил инерции возвратно-поступательно движущихся масс с разной интенсивностью их приложения. При этом их максимальная величина для одноцилиндровых двигателей больше максимальной величины сил инерции возвратно-поступательно движущихся масс, рассчитанных в зависимости от угла поворота коленчатого вала при постоянных других параметрах, т.е. традиционным способом, в 4...7 раз.

Похожие патенты RU2260131C2

название год авторы номер документа
СПОСОБ ПОВЫШЕНИЯ УСТОЙЧИВОСТИ РАБОТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 2004
  • Огнева Елена Георгиевна
  • Савин Анатолий Иванович
  • Борисенков Евгений Васильевич
  • Ковалев Николай Григорьевич
  • Олейников Владимир Иванович
  • Гаврилин Евгений Васильевич
  • Зубарев Юрий Борисович
  • Антошкин Виктор Иванович
RU2267623C1
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ РАБОТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 2004
  • Огнева Елена Георгиевна
  • Савин Анатолий Иванович
  • Борисенков Евгений Васильевич
  • Ковалев Николай Григорьевич
  • Олейников Владимир Иванович
  • Гаврилин Евгений Васильевич
  • Зубарев Юрий Борисович
  • Антошкин Виктор Иванович
RU2267624C1
СПОСОБ ПОЛУЧЕНИЯ ИНДИКАТОРНОЙ ДИАГРАММЫ ДЛЯ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ КОСВЕННЫМ ПУТЕМ 2015
  • Горелик Геннадий Бенцианович
  • Коньков Алексей Юрьевич
RU2579304C1
Способ тарировки индикаторной диаграммы для двигателей внутреннего сгорания, полученной косвенным путем 2018
  • Горелик Геннадий Бенцианович
  • Коньков Алексей Юрьевич
RU2706326C1
СПОСОБ РЕГУЛИРОВАНИЯ ЧИСЛА ОБОРОТОВ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ ТРАНСПОРТНОГО СРЕДСТВА 2004
  • Огнева Елена Георгиевна
  • Савин Анатолий Иванович
  • Борисенков Евгений Васильевич
  • Олейников Владимир Иванович
  • Гаврилин Евгений Васильевич
  • Зубарев Юрий Борисович
  • Сытенко Николай Иванович
  • Костиков Валерий Иванович
RU2267763C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЗАПАСА ХОДА ТРАНСПОРТНОГО СРЕДСТВА ПО ВЕЛИЧИНЕ ЧАСОВОГО РАСХОДА ТОПЛИВА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 2004
  • Огнева Елена Георгиевна
  • Савин Анатолий Иванович
  • Борисенков Евгений Васильевич
  • Олейников Владимир Иванович
  • Гаврилин Евгений Васильевич
  • Зубарев Юрий Борисович
  • Сытенко Николай Иванович
  • Костиков Валерий Иванович
RU2267642C1
СПОСОБ РЕГУЛИРОВАНИЯ ЧИСЛА ОБОРОТОВ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ ТЯГОВОГО ТРАНСПОРТНОГО СРЕДСТВА 2004
  • Огнева Елена Георгиевна
  • Савин Анатолий Иванович
  • Борисенков Евгений Васильевич
  • Олейников Владимир Иванович
  • Гаврилин Евгений Васильевич
  • Зубарев Юрий Борисович
  • Сытенко Николай Иванович
  • Костиков Валерий Иванович
RU2267762C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЗАПАСА ХОДА ТЯГОВОГО ТРАНСПОРТНОГО СРЕДСТВА ПО ВЕЛИЧИНЕ ЧАСОВОГО РАСХОДА ТОПЛИВА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 2004
  • Огнева Елена Георгиевна
  • Савин Анатолий Иванович
  • Борисенков Евгений Васильевич
  • Олейников Владимир Иванович
  • Гаврилин Евгений Васильевич
  • Зубарев Юрий Борисович
  • Сытенко Николай Иванович
  • Костиков Валерий Иванович
RU2267643C1
Силовой агрегат 2023
  • Рыбачук Владислав Геннадьевич
  • Гусаров Владимир Васильевич
RU2826661C1
БЕСШАТУННЫЙ ОППОЗИТНЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ 2011
  • Семенов Александр Алексеевич
  • Савицкий Владимир Яковлевич
  • Дьячков Юрий Алексеевич
RU2482301C1

Реферат патента 2005 года СПОСОБ ОПТИМИЗАЦИИ РАБОТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Изобретение относится к двигателестроению, в частности для определения технического состояния двигателей внутреннего сгорания. Изобретение позволяет повысить КПД двигателя и его моторесурс путем оптимизации режима работы двигателя внутреннего сгорания. Способ оптимизации работы двигателя внутреннего сгорания, заключающийся в том, что определяют скорость и ускорение поршня и строят индикаторную диаграмму силы, действующей на поршень в зависимости от угла поворота шейки коленчатого вала вокруг его оси вращения, или снимают тепловые характеристики работы двигателя внутреннего сгорания и на основании теплового расчета строят указанную выше индикаторную диаграмму и затем определяют силы инерции возвратно-поступательного движения масс поршня и кривошипно-шатунного механизма каждого цилиндра двигателя внутреннего сгорания в зависимости от ускорения или замедления поршня. Измеряют величину давления продуктов сгорания топлива на поршень и изменения величины давления на поршень продуктов сгорания топливной смеси в зависимости от угла поворота шейки коленчатого вала вокруг оси вращения последнего, с учетом измеренных величин давления определяют величину сил возвратно-поступательного перемещения движущихся масс поршня и кривошипно-шатунного механизма двигателя внутреннего сгорания в направлении по оси цилиндра двигателя внутреннего сгорания с построением индикаторной диаграммы, после чего для каждого полуоборота коленчатого вала определяют среднюю суммарную тангенциальную силу (Тср), действующую на кривошип в зависимости от крутящего момента (Мкр.ср.) на коленчатом валу:

Tср=Mкр.ср./R,

где R - радиус кривошипа коленчатого вала, после чего определяют средние суммарные силы вдоль оси поршня и кривошипно-шатунного механизма (Р) в зависимости от угла α поворота коленчатого вала и угла β отклонения шатуна от оси цилиндра:

P=Tср/sin(α+β)/cosβ

На основании полученных результатов для каждого полуоборота коленчатого вала определяют суммарную величину тангенциальной силы на кривошипе коленчатого вала, суммарную величину силы давления продуктов сгорания топливной смеси в цилиндре и суммарную силу инерции возвратно-поступательного перемещения масс поршня и кривошипно-шатунного механизма для каждого цилиндра как разницу между средними суммарными силами Р для средней суммарной тангенциальной силы Тср и суммарными силами давления продуктов сгорания топливной смеси в зависимости от угла поворота коленчатого вала, после чего устанавливают на валу двигателя маховик и обеспечивают вращение коленчатого вала с постоянной угловой скоростью. Размер маховика определяют из условия, что создаваемый им суммарный крутящий момент сопротивления вращению коленчатого вала равен суммарному крутящему моменту от ускорения вращения коленчатого вала под действием рассчитанной выше суммарной силы инерции.

Формула изобретения RU 2 260 131 C2

Способ оптимизации работы двигателя внутреннего сгорания, заключающийся в том, что определяют скорость и ускорение поршня и строят индикаторную диаграмму силы, действующей на поршень в зависимости от угла поворота шейки коленчатого вала вокруг его оси вращения или снимают тепловые характеристики работы двигателя внутреннего сгорания и на основании теплового расчета строят указанную выше индикаторную диаграмму и затем определяют силы инерции возвратно-поступательного движения масс поршня и кривошипно-шатунного механизма каждого цилиндра двигателя внутреннего сгорания в зависимости от ускорения или замедления поршня, отличающийся тем, что измеряют величину давления продуктов сгорания топлива на поршень и изменения величины давления на поршень продуктов сгорания топливной смеси в зависимости от угла поворота шейки коленчатого вала вокруг оси вращения последнего, с учетом измеренных величин давления определяют величину сил возвратно-поступательного перемещения движущихся масс поршня и кривошипно-шатунного механизма двигателя внутреннего сгорания в направлении по оси цилиндра двигателя внутреннего сгорания с построением индикаторной диаграммы, после чего для каждого полуоборота коленчатого вала определяют среднюю суммарную тангенциальную силу (Тср), действующую на кривошип в зависимости от крутящего момента (Мкр.ср.) на коленчатом валу

Tср=Mкр.ср./R,

где R - радиус кривошипа коленчатого вала, после чего определяют средние суммарные силы вдоль оси поршня и кривошипно-шатунного механизма (Р) в зависимости от угла α поворота коленчатого вала и угла β отклонения шатуна от оси цилиндра

P=Tср/sin(α+β)/cosβ,

на основании полученных результатов для каждого полуоборота коленчатого вала определяют суммарную величину тангенциальной силы на кривошипе коленчатого вала, суммарную величину силы давления продуктов сгорания топливной смеси в цилиндре и суммарную силу инерции возвратно-поступательного перемещения масс поршня и кривошипно-шатунного механизма для каждого цилиндра как разницу между средними суммарными силами Р для средней суммарной тангенциальной силы Тср и суммарными силами давления продуктов сгорания топливной смеси в зависимости от угла поворота коленчатого вала, после чего устанавливают на валу двигателя маховик и обеспечивают вращение коленчатого вала с постоянной угловой скоростью, при этом размер маховика определяют из условия, что создаваемый им суммарный крутящий момент сопротивления вращению коленчатого вала равен суммарному крутящему моменту от ускорения вращения коленчатого вала под действием рассчитанной выше суммарной силы инерции.

Документы, цитированные в отчете о поиске Патент 2005 года RU2260131C2

КОЛЧИН А.И., ДЕМИДОВ В.П
Расчет автомобильных и тракторных двигателей
- М.: Высшая школа
Способ получения фтористых солей 1914
  • Коробочкин З.Х.
SU1980A1
Аппарат для испытания прессованных хлебопекарных дрожжей 1921
  • Хатеневер Л.С.
SU117A1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ И ЭКСПЕРТНАЯ СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1994
  • Добролюбов И.П.
  • Савченко О.Ф.
  • Альт В.В.
RU2078324C1
СПОСОБ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ И/ИЛИ ТРАНСМИССИИ АВТОМОБИЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Ушаков А.П.
  • Тварадзе С.В.
  • Грабовецкий А.А.
  • Рейбанд Ю.Я.
  • Альшевский А.Н.
  • Морошкин И.В.
RU2165605C1
СПОСОБ ОПТИМИЗАЦИИ РАБОТЫ СИСТЕМЫ УПРАВЛЕНИЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 1999
  • Голубев В.И.
  • Беляев Б.В.
  • Деревенских В.Ф.
  • Павутницкий Ю.В.
  • Лямин А.Е.
RU2157463C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ КОРРЕКЦИИ УГЛА ОПЕРЕЖЕНИЯ ЗАЖИГАНИЯ 1990
  • Гутцайт Л.Э.
  • Пустельников С.Г.
  • Тютина С.В.
RU2028501C1
Способ автоматического регулирования рабочего процесса дизеля и устройство для его осуществления 1984
  • Баскаков Леонид Васильевич
  • Гришин Федор Егорович
  • Дружинин Петр Владимирович
  • Дыбок Василий Васильевич
  • Тюпаев Клим Келюевич
  • Шварцман Борис Абрамович
SU1213232A1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ И ЭКСПЕРТНАЯ СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Добролюбов И.П.
  • Савченко О.Ф.
  • Альт В.В.
RU2175120C2
US 4539841 А, 10.09.1985
US 5396427 А, 07.03.1995
Шахтная гидравлическая стойка 1973
  • Куцанкин Василий Андреевич
  • Анохин Анатолий Афанасьевич
  • Карасев Станислав Петрович
  • Захарченко Герман Федорович
SU446664A1

RU 2 260 131 C2

Авторы

Огнева Е.Г.

Савин А.И.

Борисенков Е.В.

Ковалев Н.Г.

Олейников В.И.

Гаврилин Е.В.

Даты

2005-09-10Публикация

2003-09-17Подача