Изобретение относится к технологии получения металлических или оксидных наночастиц.
В настоящее время наночастицы металлов (с размерами от 5 до 50 нм) широко применяются в электронной и химической промышленности, медицине и ряде других отраслей.
Известен способ производства наночастиц, при котором отрезки металлической проволоки диаметром 7,5-25 мкм помещают в камеру и пропускают через них электрический ток от генератора импульсов с рабочим током 450 кА и длительностью единичного импульса 100 нс. Происходит взрыв отрезка проволоки, при котором образуются наночастицы, см. Р Sen и др. "Preparation of Cu, Ag, Fe and Al nanoparticles by the exploding wire technique", Proc. Indian Sci (Chem. Sci Vol.115, Nos 5&6, October-December 2003, p.p.499-508, Indian Academy of Sciences (копия ссылки прилагается).
Недостатком этого способа является недопустимо большой разброс получаемых частиц по их размерам: наночастицы (1-100 нм), отдельные фрагменты проволоки (10 мкм и более). Кроме того, реализация способа требует наличия весьма прочной камеры, мощного специального генератора; учитывая чрезвычайно высокий уровень рабочих токов (сотни килоампер), процесс крайне сложно автоматизировать в режиме непрерывной работы.
Известен способ производства наночастиц, в котором в камеру с диэлектрической жидкостью помещают электроды и осуществляют между ними импульсный электрический разряд с образованием дуги, см. W.H.Lee и др., "Electro-discharge method to manufacture superparamagnetic iron oxide nanoparticles". International Journal of Nanoscience, Vol 2, Nos 4&5 (2003), p.p.271-282 (копия ссылки прилагается).
Данное техническое решение принято за прототип настоящего изобретения.
При реализации этого способа температура диэлектрической жидкости меняется неконтролируемо в весьма широких пределах. Это приводит к тому, что условия разряда также меняются в широком диапазоне значений. В результате получаемые наночастицы имеют размеры от 5 до 300 нм, в то время как наночастицы проявляют специфические, необходимые для их практического использования, свойства при размерах от 5 до 50 нм.
Кроме того, на качество получаемых наночастиц влияет непостоянство расстояния между электродами, что также резко изменяет параметры разряда; в камере накапливаются продукты эрозии электродов - ионы и микрочастицы, которые в свою очередь негативно влияют на условия разряда и, соответственно, параметры продукта (наночастицы).
В основу настоящего изобретения положено решение задачи повышения качества наночастиц путем увеличения доли наночастиц с размерами 5-50 нм в общей массе получаемых наночастиц.
Согласно изобретению эта задача решается за счет того, что в способе производства наночастиц, в котором в камеру с диэлектрической жидкостью помещают электроды и осуществляют между ними импульсный электрический разряд с образованием дуги, измеряют расстояние между электродами и поддерживают его постоянным, осуществляют проточное движение диэлектрической жидкости через камеру, при этом измеряют температуру диэлектрической жидкости на входе и выходе из камеры и поддерживают в заданных пределах значения температуры как на входе, так и на выходе из камеры, изменяя расход диэлектрической жидкости, проходящей через камеру, при этом обеспечивают разность температур диэлектрической жидкости на выходе из камеры и на входе в камеру не более 7°С; температуру диэлектрической жидкости могут поддерживать в пределах от 5 до 50°С; в диэлектрическую жидкость могут подавать инертный газ; в диэлектрическую жидкость могут подавать кислород.
Заявителем не выявлены источники, содержащие информацию о технических решениях, идентичных настоящему изобретению, что позволяет сделать вывод о его соответствии критерию "новизна".
Благодаря реализации отличительных признаков изобретения достигается весьма важный результат, который состоит в значительном повышении удельной доли наночастиц с размерами 5-50 нм, в наибольшей степени проявляющих специфические свойства.
Заявителем не обнаружены какие-либо источники информации, содержащие сведения о влиянии заявленных отличительных признаков на достигаемый вследствие их реализации технический результат. Это, по мнению заявителя, свидетельствует о соответствии данного технического решения критерию "изобретательский уровень".
Сущность изобретения поясняется чертежом, на котором приведена схема установки для реализации способа.
В камере 1, выполненной из прочного диэлектрического материала, в частности поликарбоната, размещены металлические электроды 2 и 3. Электрод 2 снабжен приводом 4, обеспечивающим его перемещение с целью поддержания заданного постоянного значения межэлектродного расстояния. Контроль этого расстояния осуществляется с помощью оптического сенсора 5, который связан с контроллером 6. При изменении межэлектродного расстояния сенсор 5 подает соответствующий сигнал в контроллер 6, который управляет приводом 4 электрода 2. Электроды 2, 3 соединены с генератором 7 высоковольтных импульсов (напряжение холостого хода 50 кВ, ток 20 А). Диэлектрическая жидкость, например деионизированная вода, подается в магистраль 8 и затем с помощью насоса 9 через входную часть 10 камеры поступает внутрь камеры. Насос 9 управляется приводом 11, связанным с контроллером 6. В камере 1 расположены датчик 12 (на выходе) и датчик 13 (на входе) температуры жидкости в камере, связанные с контроллером 6. В выходной части 14 камеры 1 установлен сепаратор 15, из которого по патрубку 16 после сепарирования поступают произведенные наночастицы. Вода и микрочастицы удаляются через патрубок 17.
При периодическом осуществлении электрических разрядов между электродами 2 и 3 происходит их эрозия, в результате которой образуются наночастицы, а также ионы и микрочастицы. При повышении температуры диэлектрической жидкости сигналы от датчиков 12 и 13 поступают в контроллер 6, который управляет приводом 11 насоса 9. Расход диэлектрической жидкости через камеру 1 возрастает, и температура жидкости на выходе камеры понижается, оставаясь в заданных пределах, практически не выше 50°С. Поддержание температуры диэлектрической жидкости в камере 1 ниже 5°С нецелесообразно, поскольку не приводит к заметному улучшению качества продукта, но при этом нерационально увеличивается расход диэлектрической жидкости. При температуре свыше 50°С резко уменьшается удельная доля наночастиц с требуемыми размерами. Кроме того, контроллер 6 обеспечивает разность температур на входе и выходе камеры 1 не более 7°С, так как при превышении этого значения происходит газовыделение из диэлектрической жидкости с образованием пузырьков, что отрицательно влияет на условия разряда и, соответственно, на качество наночастиц.
В случае необходимости получения преимущественно металлических наночастиц в диэлектрическую жидкость подают инертный газ, например аргон.
При необходимости получения преимущественно оксидных наночастиц в диэлектрическую жидкость подают кислород.
Результаты испытаний способа приведены в таблице. Были использованы электроды из меди.
Таким образом, установлено существенное увеличение доли наночастиц с размерами 5-50 нм при реализации заявленного способа в сравнении со способом-прототипом.
Для реализации способа использовано известное оборудование и материалы, что обусловливает соответствие изобретения критерию "промышленная применимость".
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОБЕЗЗАРАЖИВАНИЯ ВОДЫ | 2004 |
|
RU2286951C2 |
УСТАНОВКА ДЛЯ ОБЕЗЗАРАЖИВАНИЯ ВОДЫ ЭЛЕКТРИЧЕСКИМИ РАЗРЯДАМИ | 2004 |
|
RU2262487C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ ТОКОПРОВОДЯЩИХ МАТЕРИАЛОВ | 2009 |
|
RU2417862C1 |
СПОСОБ СИНТЕЗА НАНОЧАСТИЦ КАРБИДА ВОЛЬФРАМА | 2010 |
|
RU2433888C1 |
ГАЗОВЫЙ ДЕТЕКТОР НА ОСНОВЕ АМИНИРОВАННОГО ГРАФЕНА И НАНОЧАСТИЦ ОКСИДОВ МЕТАЛЛОВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2021 |
|
RU2776335C1 |
ГАЗОАНАЛИТИЧЕСКИЙ МУЛЬТИСЕНСОРНЫЙ ЧИП НА ОСНОВЕ ГРАФЕНА, МОДИФИЦИРОВАННОГО НАНОЧАСТИЦАМИ БЛАГОРОДНЫХ МЕТАЛЛОВ, И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2023 |
|
RU2814586C1 |
СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗОУГЛЕРОДНЫХ НАНОЧАСТИЦ | 2011 |
|
RU2465008C1 |
ГАЗОАНАЛИТИЧЕСКИЙ МУЛЬТИСЕНСОРНЫЙ ЧИП НА ОСНОВЕ АМИНИРОВАННОГО ГРАФЕНА, МОДИФИЦИРОВАННОГО НАНОЧАСТИЦАМИ ГИДРОКСИДОВ И ОКСИДОВ НИКЕЛЯ, И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2023 |
|
RU2814613C1 |
СПОСОБ СИНТЕЗА НАНОСТРУКТУРНОГО КОМПОЗИЦИОННОГО СеО-PdO МАТЕРИАЛА | 2013 |
|
RU2532756C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКИХ ПОКРЫТИЙ НА ОСНОВЕ НАНОКРИСТАЛЛОВ ФТОРИДА ЛИТИЯ ИЛИ ФТОРИДА НАТРИЯ | 2007 |
|
RU2347741C1 |
Изобретение относится к порошковой металлургии, к способам получения металлических и оксидных наночастиц. В предложенном способе, включающем помещение в камеру с диэлектрической жидкостью электродов и осуществление между ними импульсного электрического разряда с образованием дуги, согласно изобретению измеряют расстояние между электродами и поддерживают его постоянным, осуществляют проточное движение диэлектрической жидкости через камеру, при этом измеряют температуру диэлектрической жидкости на входе и выходе из камеры и поддерживают в заданных пределах значения температуры как на входе, так и на выходе из камеры, изменяя расход диэлектрической жидкости, проходящей через камеру, при этом обеспечивают разность температур диэлектрической жидкости на выходе из камеры и на входе в камеру не более 7°С. Обеспечивается повышение качества наночастиц и увеличение доли наночастиц с размерами 5-50 нм. 3 з.п. ф-лы, 1 ил., 1 табл.
W.H.LEE и др | |||
Electro-discharge method to manufacture superparamagnetic iron oxide nanoparticles, International Journal of Nanoscience, Vol | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
WO 03080275 A2, 02.10.2003 | |||
ТИАИМИДАТРИКАРБОЦИАНИНЫ В КАЧЕСТВЕ СПЕКТРАЛЬНЫХ СЕНСИБИЛИЗАТОРОВ БРОМИОДСЕРЕБРЯНЫХ ФОТОГРАФИЧЕСКИХ ЭМУЛЬСИЙ | 1986 |
|
SU1400045A1 |
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКОГО ПОРОШКА | 1997 |
|
RU2116164C1 |
Способ получения металлическогопОРОшКА | 1979 |
|
SU833377A1 |
УСТРОЙСТВО ДЛЯ ЭЛЕКТРОЭРОЗИОННОГО ДИСПЕРГИРОВАНИЯ МЕТАЛЛОВ В НАСЫПНОМ СЛОЕ | 1992 |
|
RU2015859C1 |
Авторы
Даты
2006-03-27—Публикация
2004-09-07—Подача