Настоящее изобретение относится к многослойной, биаксиально вытянутой, способной к усадке, термосвариваемой рукавной пленке и к ее применению в качестве упаковки и оболочки для мяса, мяса с костями и пастообразных пищевых продуктов.
Из заявки DE 4339337 С2 уже известна пятислойная рукавная пленка на основе полиамида, используемая в качестве упаковки и оболочки для пастообразных пищевых продуктов, прежде всего для колбасных изделий. Такая рукавная пленка состоит из внутреннего и наружного слоев, сформированных из одного и того же полиамидного материала, из среднего полиолефинового слоя, а также из двух слоев, сформированных из усилителя адгезии, которым служит один и тот же материал, и расположенных соответственно между внутренним и средним слоями и между средним и наружным слоями. Внутренний и наружный слои сформированы по меньшей мере из одного алифатического полиамида и/или по меньшей мере из одного алифатического сополиамида, а также по меньшей мере из одного частично ароматического полиамида и/или по меньшей мере из одного частично ароматического сополиамида, при этом на долю частично ароматического полиамида и/или сополиамида приходится от 5 до 60 мас.% в пересчете на общую массу полимерной смеси частично ароматических и алифатических полиамидов и сополиамидов. Подобной рукавной пленке, изготавливаемой соэкструзией, за счет ее биаксиального вытягивания и термофиксации придают способность к контролируемой усадке. Такая рукавная пленка не отвечает в полной мере всем требованиям, предъявляемым к ее эксплуатационно-техническим свойствам, которые имеют важное значение для ее использования в качестве оболочки, соответственно упаковки для мяса, прежде всего мяса с костями. Так, в частности, такая пленка обладает слишком низкой прочностью на прокалывание, и поэтому при ее использовании в качестве упаковочной пленки для мяса с костями существует опасность ее прокалывания выступающими костями после ее натягивания в горячем состоянии на упаковываемое мясо. Помимо этого подобные рукавные пленки при их использовании в качестве упаковки и оболочки для мяса или мяса с костями и для пастообразных пищевых продуктов должны также допускать возможность их простого запечатывания термосваркой. У изготовленных из рукавных пленок подобного типа пакетов прочность их термосварного шва является решающим фактором, определяющим возможность их использования в качестве упаковочного материала. Так, в частности, запечатанный снизу термосварным швом пакет из полимерной пленки при расфасовке в него через фасовочную трубу, например, нарезанного крупными кусками окорока или мяса подвергается значительным нагрузкам, которые возникают при падении в пакет упаковываемого куска и которые в зависимости от его массы могут привести к разрыву термосварного шва и тем самым к полному раскрытию пакета с нижней стороны. Помимо этого термосварной шов подвергается исключительно высоким нагрузкам и при последующем вакуумировании и усадке пакетов. Еще одним фактором, которым определяются высокие требования, предъявляемые к прочности пленки на прокалывание и к прочности ее термосварного шва, являются нагрузки, которым запечатанный пакет с расфасованным в него продуктом подвергается при транспортировке и хранении.
Исходя из вышеизложенного, в основу настоящего изобретения была положена задача разработать биаксиально вытянутую, способную к усадке, термосвариваемую рукавную пленку в качестве упаковки и оболочки для мяса, мяса с костями и пастообразных пищевых продуктов, которая наряду с такими предъявляемыми к подобной упаковочной пленке требованиями, как высокая непроницаемость для водяного пара и кислорода, обладала бы высокой прочностью на прокалывание, с одной стороны, и характеризовалась бы высокой прочностью термосварного шва, с другой стороны.
Указанная задача решается согласно изобретению с помощью многослойной, биаксиально вытянутой, способной к усадке, термосвариваемой рукавной пленки, отличительные признаки которой представлены в п.1 формулы изобретения.
В состав внутреннего слоя предлагаемой в изобретении рукавной пленки входит по меньшей мере один термосвариваемый сополиамид. Такие известные как таковые сополиамиды получают из мономеров, выбранных из группы, включающей капролактам, лауринлактам, ω-аминоундекановую кислоту, адипиновую кислоту, азелаиновую кислоту, себациновую кислоту, декандикарбоновую кислоту, додекандикарбоновую кислоту, терефталевую кислоту, изофталевую кислоту, тетраметилендиамин, пентаметилендиамин, гексаметилендиамин, октаметилендиамин и ксилилендиамин. Толщина внутреннего слоя составляет от 5 до 16 мкм.
При создании изобретения неожиданно было установлено, что формирование внутреннего слоя рукавной пленки из сополиамида с добавлением к нему аморфного полиамида, и/или гомополиамида, и/или модифицированного полиолефина позволяет значительно повысить прочность термосварного шва по сравнению с прочностью термосварного шва, характерной для пленки, внутренний слой которой сформирован из чистого сополиамида, соответственно достичь высоких показателей прочности термосварного шва уже при более низкой температуре термосварки. В соответствии с этим предлагаемая в изобретении пленка обладает значительными эксплуатационно-техническими преимуществами перед известными пленками.
В качестве аморфных полиамидов для формирования внутреннего слоя используют полиамиды, температура стеклования которых в сухом состоянии составляет от 50 до 200°С. Примерами таких полиамидов являются полиамид 6I/6T, полиамид 6-3-Т и полиамид 6I.
В качестве гомополиамидов для формирования внутреннего слоя используют полиамиды, которые можно получать из тех же мономеров, что и описанные выше сополиамиды. Такие гомополиамиды могут представлять собой алифатические, а также частично ароматические соединения.
Модифицированные полиолефины, используемые для формирования внутреннего слоя, представляют собой сополимеры этилена или пропилена и необязательно других линейных α-олефинов, содержащих от 3 до 8 С-атомов, с α, β-ненасыщенными карбоновыми кислотами, предпочтительно с акриловой кислотой, метакриловой кислотой, и/или их солями с металлами, и/или их алкиловыми эфирами, или соответствующие графт-сополимеры указанных мономеров, привитых на полиолефинах, либо частично омыленные сополимеры этилена с винилацетатом, которые необязательно подвергнуты привитой сополимеризации с α, β-ненасыщенной карбоновой кислотой и характеризуются низкой степенью омыления, или их смеси. Модифицированные полиолефины могут представлять собой также модифицированные гомо- или сополимеры этилена и/или пропилена и необязательно других линейных α-олефинов с 3-8 С-атомами, содержащие привитые на них мономеры, выбранные из группы α, β-ненасыщенных дикарбоновых кислот, предпочтительно малеиновую кислоту, фумаровую кислоту, итаконовую кислоту либо их ангидриды, эфиры, амиды или имиды.
Основным компонентом внутреннего слоя является термосвариваемый сополиамид или смесь термосвариваемых сополиамидов, при этом количество такого основного компонента составляет от 50 до 95 мас.%. Каждый из других компонентов, которыми являются аморфный полиамид, и/или гомополиамид, и/или модифицированный полиолефин, можно добавлять к основному компоненту в количестве от 1 до 30 мас.%, предпочтительно от 5 до 25 мас.%, в пересчете на всю массу внутреннего слоя.
Оба сформированных из усилителя адгезии слоя предпочтительно имеют одинаковый состав и выполнены из модифицированных функциональными группами полиолефинов. К подобным модифицированным полиолефинам относятся модифицированные гомо- или сополимеры этилена и/или пропилена и необязательно других линейных α-олефинов с 3-8 С-атомами, содержащие привитые на них мономеры, выбранные из группы α, β-ненасыщенных дикарбоновых кислот, предпочтительно малеиновую кислоту, фумаровую кислоту, итаконовую кислоту либо их ангидриды, эфиры, амиды или имиды. Толщина каждого из слоев усилителя адгезии составляет от 3 до 10 мкм.
Средним слоем в предлагаемой в изобретении упаковочной пленке является полиолефиновый слой, сформированный предпочтительно из гомополимеров этилена или пропилена и/или сополимеров линейных α-олефинов с 2-8 С-атомами. Для формирования этого среднего слоя предпочтительно использовать линейный полиэтилен низкой плотности, полиэтилен высокой плотности, гомополимер полипропилена, блок-сополимер полипропилена и статистический сополимер полипропилена. Толщина такого среднего слоя составляет от 6 до 22 мкм.
Для формирования наружного слоя могут использоваться различные материалы, а именно гомополиамиды индивидуально или в смеси между собой, сополиамиды индивидуально или в смеси между собой, а также смеси гомо- и сополиамидов. Дополнительно в состав материала для формирования наружного слоя можно также включать сополимеры этилена с виниловым спиртом и/или модифицированные полиолефины. Толщина наружного слоя составляет от 12 до 43 мкм.
Пригодные для использования в указанных выше целях гомо- и сополиамиды известны и их можно получать из соответствующих мономеров, таких, например, как капролактам, лауринлактам, ω-аминоундециловая кислота, адипиновая кислота, азелаиновая кислота, себациновая кислота, декандикарбоновая кислота, додекандикарбоновая кислота, терефталевая кислота, изофталевая кислота, тетраметилендиамин, пентаметилендиамин, гексаметилендиамин, октаметилендиамин и ксилилендиамин.
Предпочтительными гомо- и сополиамидами являются полиамид 6, полиамид 12, полиамид 610, полиамид 612, полиамид MXD6, полиамид 6/66, полиамид 6/12 и полиамид 6I/6T.
Сополимеры этилена и винилового спирта получают путем полного омыления сополимеров этилена с винилацетатом. В целом на долю этилена в его сополимерах с виниловым спиртом приходится от 27 до 48 мол.%. К материалу, используемому для формирования наружного слоя, предпочтительно добавлять сополимеры этилена и винилового спирта, в которых на долю этилена приходится от 27 до 38 мол.%.
Модифицированные полиолефины представляют собой сополимеры этилена или пропилена и необязательно других линейных α-олефинов, содержащих от 3 до 8 С-атомов, с α, β-ненасыщенными карбоновыми кислотами, предпочтительно с акриловой кислотой, метакриловой кислотой, и/или их солями с металлами, и/или их алкиловыми эфирами, или соответствующие графт-сополимеры указанных мономеров, привитых на полиолефинах, либо частично омыленные сополимеры этилена и винилацетата, которые необязательно подвергнуты привитой сополимеризации с α, β-ненасыщенной карбоновой кислотой и характеризуются низкой степенью омыления, или их смеси. Модифицированные полиолефины могут представлять собой также модифицированные гомо- или сополимеры этилена и/или пропилена и необязательно других линейных α-олефинов с 3-8 С-атомами, содержащие привитые на них мономеры, выбранные из группы α, β-ненасыщенных дикарбоновых кислот, предпочтительно малеиновую кислоту, фумаровую кислоту, итаконовую кислоту либо их ангидриды, эфиры, амиды или имиды.
Основным компонентом наружного слоя являются гомополиамиды, используемые индивидуально или в смеси между собой, сополиамиды, используемые индивидуально или в смеси между собой, либо смеси гомо- и сополиамидов, при этом количество такого основного компонента составляет от 50 до 100 мас.%. При включении в состав материала наружного слоя других компонентов, таких как сополимеры этилена с виниловым спиртом и/или модифицированные полиолефины, каждый из них можно добавлять к основному компоненту в количестве от 0 до 40 мас.% в пересчете на всю массу наружного слоя.
Помимо рассмотренных выше материалов в состав рукавной пленки могут входить также обычные вспомогательные вещества, например средства, предохраняющие пленки от слипания, стабилизаторы, антистатики или мягчители. Такие вспомогательные вещества обычно добавляют в количестве от 0,1 до 5 мас.%. Помимо этого пленку можно также окрашивать в определенный цвет добавлением пигментов или их смесей.
Предлагаемые в изобретении рукавные пленки получают соэкструзией, для чего отдельные полимеры, предназначенные для получения различных слоев, пластифицируют и гомогенизируют в пяти экструдерах, а затем каждый из пяти полученных полимерных расплавов отдельным потоком подают в экструзионную головку, предназначенную для формирования пяти слоев с требуемой толщиной каждого из них, получая на выходе головки исходный рукав, который далее подвергают биаксиальному вытягиванию и термофиксации.
Общая толщина предлагаемых в изобретении рукавных пленок составляет от 30 до 100 мкм, предпочтительно от 50 до 90 мкм.
Предлагаемые в изобретении рукавные пленки, как неожиданно было установлено, существенно превосходят известные из DE 4339337 С2 рукавные пленки и по прочности сварного шва, и по прочности на прокалывание.
Для определения прочности термосварных швов каждую из тестируемых рукавных пленок сваривали с внутренней стороны перпендикулярно направлению их формования с помощью лабораторного сварочного аппарата SGPE 20 фирмы W.Kopp Verpackungsmaschinen. После сварки от таких рукавных пленок отрезали образцы в виде полосок шириной 25 мм таким образом, чтобы сварной шов располагался перпендикулярно продольной протяженности полоски. Затем эти полоски подвергали растяжению на разрывной машине фирмы Instron со скоростью вытяжки 500 мм/мин до разрыва сварного шва. Максимальное усилие, при котором тестируемая пленка рвалась по сварному шву, обозначается ниже как прочность сварного шва.
При испытании рукавных пленок на прокалывание мерой их прочности на прокалывание служит работа разрушения.
Работу разрушения определяли в соответствии со стандартом DIN 53373, однако в отличие от этого стандарта в качестве пробойника использовали закаленный цилиндрический стержень формы А диаметром 3 мм согласно стандарту DIN EN 28734 при скорости его подачи в ходе испытаний, равной 500 мм/мин. Работа разрушения соответствует энергии, затрачиваемой до момента появления у образца первого надрыва.
Известная из DE 4339337 С2 рукавная пленка (сравнительный пример 1) не поддавалась термосварке при температурах 140 и 200°С, тогда как у предлагаемых в изобретении рукавных пленок, термосварка которых была возможна уже при температуре 140°С, сварной шов обладал прочностью, которую можно оценить как от удовлетворительной до хорошей. Прочность полученных при температуре 200°С термосварных швов у предлагаемых в изобретении рукавных пленок по меньшей мере на 15% превышала прочность сварных швов у сравнительных пленок.
При испытании на прокалывание полученные для предлагаемых в изобретении рукавных пленок значения работы разрушения также несколько, соответственно существенно превышали значения, полученные для сравнительных пленок.
Ниже изобретение более подробно рассмотрено на примерах.
Пример 1
Отдельные полимеры, предназначенные для получения различных слоев, пластифицировали и гомогенизировали в пяти экструдерах. Затем каждый из пяти полученных полимерных расплавов отдельным потоком подавали в экструзионную головку, предназначенную для формирования пяти слоев с требуемой толщиной каждого из них, получая на выходе головки исходный рукав, который далее подвергали биаксиальному вытягиванию и термофиксации. Диаметр такого исходного рукава составлял 45,5 мм при средней общей толщине всей его многослойной структуры, равной 0,49 мм. Далее этот исходный рукав нагревали инфракрасным излучением до 109°С и подвергали вытягиванию с кратностью двухмерной вытяжки, равной 9,7. Полученный после такого биаксиального вытягивания рукав подвергали термофиксации, стягивали в двойную плоскую пленку и сматывали в рулон. Средняя общая толщина рукава составляла 50 мкм. Ширина стянутого в двойную плоскую пленку рукава составляла 209 мм.
Ниже указаны полимеры, из которых у готового рукава были сформированы его слои, и значения толщины каждого такого слоя:
При определении прочности сварного шва были получены следующие результаты:
температура сварки 140°С: 7 Н/25 мм
температура сварки 200°С: 95 Н/25 мм
При испытании на прочность на прокалывание работа разрушения 10 составила 380 мДж.
Пример 2
Отдельные полимеры, предназначенные для получения различных слоев, пластифицировали и гомогенизировали в пяти экструдерах. Затем каждый из пяти полученных полимерных расплавов отдельным потоком подавали в экструзионную головку, предназначенную для формирования пяти слоев с требуемой толщиной каждого из них, получая на выходе головки исходный рукав, который далее подвергали биаксиальному вытягиванию и термофиксации. Диаметр такого исходного рукава составлял 45,5 мм при средней общей толщине всей его многослойной структуры, равной 0,48 мм. Далее этот исходный рукав нагревали инфракрасным излучением до 108°С и подвергали вытягиванию с кратностью двухмерной вытяжки, равной 9,6. Полученный после такого биаксиального вытягивания рукав подвергали термофиксации, стягивали в двойную плоскую пленку и сматывали в рулон. Средняя общая толщина рукава составляла 50 мкм. Ширина стянутого в двойную плоскую пленку рукава составляла 209 мм.
Ниже указаны полимеры, из которых у готового рукава были сформированы его слои, и значения толщины каждого такого слоя:
При определении прочности сварного шва были получены следующие результаты:
температура сварки 140°С: 75 Н/25 мм
температура сварки 200°С: 93 Н/25 мм
При испытании на прочность на прокалывание работа разрушения составила 455 мДж.
Пример 3
Отдельные полимеры, предназначенные для получения различных слоев, пластифицировали и гомогенизировали в пяти экструдерах. Затем каждый из пяти полученных полимерных расплавов отдельным потоком подавали в экструзионную головку, предназначенную для формирования пяти слоев с требуемой толщиной каждого из них, получая на выходе головки исходный рукав, который далее подвергали биаксиальному вытягиванию и термофиксации. Диаметр такого исходного рукава составлял 45,5 мм при средней общей толщине всей его многослойной структуры, равной 0,50 мм. Далее этот исходный рукав нагревали инфракрасным излучением до 109°С и подвергали вытягиванию с кратностью двухмерной вытяжки, равной 10,0. Полученный после такого биаксиального вытягивания рукав подвергали термофиксации, стягивали в двойную плоскую пленку и сматывали в рулон. Средняя общая толщина рукава составляла 50 мкм. Ширина стянутого в двойную плоскую пленку рукава составляла 210 мм.
Ниже указаны полимеры, из которых у готового рукава были сформированы его слои, и значения толщины каждого такого слоя:
При определении прочности сварного шва были получены следующие результаты:
температура сварки 140°С: 12 Н/25 мм
температура сварки 200°С: 96 Н/25 мм
При испытании на прочность на прокалывание работа разрушения составила 460 мДж.
Сравнительный пример 1
Согласно DE 4339337 С2 изготавливали пятислойную рукавную пленку, которая имела следующую структуру:
При определении прочности сварного шва были получены следующие результаты:
температура сварки 140°С: пленка не поддавалась сварке
температура сварки 200°С: пленка не поддавалась сварке
При испытании на прочность на прокалывание работа разрушения составила 315 мДж.
Сравнительный пример 2
Аналогично примеру 1 изготавливали пятистислойную рукавную пленку, с тем лишь отличием, что для формирования 5-го слоя (внутреннего) использовали чистый полиамид 6/12, представляющий собой продукт Grilon CF6S фирмы EMS-Chemie.
При определении прочности сварного шва были получены следующие результаты:
температура сварки 140°С: 35 Н/25 мм
температура сварки 200°С: 81 Н/25 мм
При испытании на прочность на прокалывание работа разрушения составила 375 мДж.
Пример 4
Отдельные полимеры, предназначенные для получения различных слоев, пластифицировали и гомогенизировали в пяти экструдерах. Затем каждый из пяти полученных полимерных расплавов отдельным потоком подавали в экструзионную головку, предназначенную для формирования пяти слоев с требуемой толщиной каждого из них, получая на выходе головки исходный рукав, который далее подвергали биаксиальному вытягиванию и термофиксации. Диаметр такого исходного рукава составлял 45,5 мм при средней толщине всей его многослойной структуры, равной 0,49 мм. Далее этот исходный рукав нагревали инфракрасным излучением до 110°С и вытягивали с кратностью вытяжки, равной 9,7. Полученный после такого биаксильного вытягивания рукав подвергали термофиксации, стягивали в плоскую пленку и сматывали в рулон. Средняя общая толщина рукава составляла 50 мкм, ширина стянутого в плоскую пленку рукава составляла 209 мм.
Ниже указаны полимеры, из которых у готового рукава были сформированы его слои и значения толщины каждого слоя:
Определена следующая прочность термосварного шва:
Температура сварки 140°С: 32Н/25мм
Температура сварки 200°С: 96 Н/25 мм
При испытании на прочность на прокалывание работа разрушения составляла 390 мДж.
Пример 5
Отдельные полимеры, предназначенные для получения различных слоев, пластифицировали и гомогенизировали в пяти экструдерах. Затем каждый из пяти полученных полимерных расплавов отдельным потоком подавали в экструзионную головку, предназначенную для формирования пяти слоев с требуемой толщиной каждого из них, получая на выходе головки исходный рукав, который далее подвергали биаксиальному вытягиванию и термофиксации. Диаметр такого исходного рукава составлял 45,5 мм при средней толщине всей его многослойной структуры, равной 0,48 мм. Далее этот исходный рукав нагревали инфракрасным излучением до 109°С и вытягивали с кратностью вытяжки, равной 9,6. Полученный после такого биаксильного вытягивания рукав подвергали термофиксации, стягивали в плоскую пленку и сматывали в рулон. Средняя общая толщина рукава составляла 50 мкм, ширина стянутого в плоскую пленку рукава составляла 210 мм.
Ниже указаны полимеры, из которых у готового рукава были сформированы его слои и значения толщины каждого слоя:
Определена следующая прочность термосварного шва:
Температура сварки 140°С: 71 Н/25 мм
Температура сварки 200°С: 98 Н/25 мм
При испытании на прочность на прокалывание работа разрушения составляла 350 мДж.
Пример 6
Отдельные полимеры, предназначенные для получения различных слоев, пластифицировали и гомогенизировали в пяти экструдерах. Затем каждый из пяти полученных полимерных расплавов отдельным потоком подавали в экструзионную головку, предназначенную для формирования пяти слоев с требуемой толщиной каждого из них, получая на выходе головки исходный рукав, который далее подвергали биаксиальному вытягиванию и термофиксации. Диаметр такого исходного рукава составлял 45,5 мм при средней толщине всей его многослойной структуры, равной 0,50 мм. Далее этот исходный рукав нагревали инфракрасным излучением до 110°С и вытягивали с кратностью вытяжки, равной 10,0. Полученный после такого биаксильного вытягивания рукав подвергали термофиксации, стягивали в плоскую пленку и сматывали в рулон. Средняя общая толщина рукава составляла 50 мкм, ширина стянутого в плоскую пленку рукава составляла 209 мм.
Ниже указаны полимеры, из которых у готового рукава были сформированы его слои и значения толщины каждого слоя:
Определена следующая прочность термосварного шва:
Температура сварки 140°С: 28 Н/25 мм
Температура сварки 200°С: 94 Н/25 мм
При испытании на прочность на прокалывание работа разрушения составляла 410 мДж.
Изобретение относится к пищевой промышленности, а именно к упаковке продукции мясоперерабатывающей промышленности. Рукавная пленка имеет внутренний слой, сформированный по меньшей мере из одного сополиамида и по меньшей мере из одного аморфного полиамида, и/или по меньшей мере одного гомополиамида, и/или по меньшей мере одного модифицированного полиолефина, средний полиолефиновый слой, а также наружный слой, сформированный по меньшей мере из одного гомополиамида, и/или по меньшей мере одного сополиамида, и/или по меньшей мере одного сополимера этилена и винилового спирта, и/или одного модифицированного полиолефина. Между внутренним слоем и средним слоем, а также между средним слоем и наружным слоем расположено по слою усилителя адгезии. Пленка, полученная в соответствии с изобретением, характеризуется значительно более высокой прочностью сварного шва, который можно получить уже при более низких температурах, а также обладает высокой прочностью на прокалывание. 2 н. и 19 з.п. ф-лы.
DE 4339337 А, 24.05.1995 | |||
Способ регулирования уровня кварцевого расплава | 1973 |
|
SU467039A1 |
Программное задающее устройство | 1980 |
|
SU879560A1 |
РУКАВНАЯ ПЛЕНКА НА ОСНОВЕ ПОЛИАМИДОВ | 1997 |
|
RU2113125C1 |
ЛЕГКОСНИМАЕМАЯ РУКАВНАЯ КОЛБАСНО-СОСИСОЧНАЯ ОБОЛОЧКА | 1998 |
|
RU2131670C1 |
ТЕРМОПЛАСТИЧНЫЙ ПОЛИМЕРНЫЙ СОСТАВ | 1999 |
|
RU2156782C1 |
Авторы
Даты
2006-05-10—Публикация
2001-02-01—Подача