ОПТОЭЛЕКТРОННЫЙ СПОСОБ ИЗМЕРЕНИЯ ШИРИНЫ И СЕРПОВИДНОСТИ ДВИЖУЩЕГОСЯ ЛИСТОВОГО МАТЕРИАЛА Российский патент 2006 года по МПК G01B11/03 G01B11/24 

Описание патента на изобретение RU2278355C2

Изобретение относится к области прокатного производства и предназначено для контроля ширины и серповидности листового материала, в частности для контроля размеров листового металлопроката.

Известен способ измерения поперечного размера проката (Патент РФ №2104483, МПК G 01 В 21/10, 10.02.1998), заключающийся во встречном сканировании двумя лучами противолежащих краев объекта и в подсчете счетных импульсов в каждой паре соответствующих информационных импульсов, отклонение размера от базового определяют как отношение числа счетных импульсов в четном числе пар информационных импульсов к числу пар информационных импульсов, умноженному на заданный пространственный интервал, соответствующий периоду последовательности счетных импульсов.

Недостатком известного способа является то, что поступательное горизонтальное перемещение объекта и изменение толщины листа приводит к ухудшению точности измерения.

Близким к предлагаемому является фотоимпульсный способ измерения размеров движущегося тела (Авторское свидетельство СССР №335534, МПК G 01 В 11/04, 11.04.1972), заключающийся в том, что измеряемое тело проецируют оптической системой на фотоэлектронный преобразователь, преобразовывают в нем световой в измерительный электрический импульс, длительность которого пропорциональна измеряемому размеру. Определяют измерительный импульс как сумму двух сигналов, первый из которых пропорционален оптической проекции измеряемого размера тела, а второй - изменению длительности фронтов первого сигнала, обусловленному расфокусировкой изображения проекции измеряемого размера вследствие перемещения тела вдоль оптической оси системы.

Недостатком данного способа является невозможность измерения тела в широком диапазоне размеров, а также ухудшение точности измерения при изменении толщины измеряемого объекта.

Технический результат - повышение точности и надежности измерения листового материала, повышение качества продукции.

Для достижения технического результата в предлагаемом способе измерения ширины и серповидности движущегося листового материала, включающем построение математической модели листа, основанной на измеренных координатах точек боковых кромок листового материала с помощью линейных многоэлементных фотоприемников, согласно предложению первоначально с помощью неподвижного первого линейного многоэлементного фотоприемника определяют координаты обеих боковых кромок листа, с помощью которых располагают подвижные второй и третий линейные многоэлементные фотоприемники над, соответственно, левой и правой кромками так, чтобы оптические оси фотоприемников были максимально приближены к нормалям, построенным из контролируемых точек, принадлежащих кромкам листа, при этом координаты кромок листа вычисляют по выражениям:

для левой кромки: Xi1=n22-Fi22,

для правой кромки: Xi2=n2*P2+C+Fi33,

где Fi2 - количество (в пикселях) затемненных при встречной подсветке (освещенных при прямой) фоточувствительных элементов второго фотоприемника, пропорциональное части листа, находящейся в зоне измерения второго фотоприемника для i-тото замера;

Fi3 - количество (в пикселях) затемненных при встречной подсветке (освещенных при прямой) фоточувствительных элементов третьего фотоприемника, пропорциональное части листа, находящейся в зоне измерения третьего фотоприемника для i-того замера;

С - расстояние (в мм) между зонами измерения второго и третьего фотоприемников;

n2 - количество (в пикселях) фоточувствительных элементов линейного многоэлементного второго фотоприемника;

Р2 - отношение зоны измерения второго фотоприемника к количеству фоточувствительных элементов данного фотоприемника (мм/пиксель);

i - номер замера;

Р3 - отношение зоны измерения третьего фотоприемника к количеству фоточувствительных элементов данного фотоприемника (мм/пиксель);

по полученным результатам строят математическую модель, при этом ширину листа для каждого замера определяют как величину отрезка на математической модели листа между контролируемыми точками, принадлежащими кромкам листа, и вычисляют по выражению:

Si=Xi2-Xi1=Fi2*P2+C+Fi33,

а серповидность для обеих кромок определяют как наибольшее расстояние между кромкой модели листа и отрезком, соединяющим крайние точки каждой из боковых кромок модели листа.

Способ поясняется чертежами. На фиг.1 представлен вариант реализации предлагаемого способа на примере определения ширины и серповидности листового металлопроката; на фиг.2 - построение модели листа по произведенным измерениям и вычисление ширины и серповидности.

Способ осуществляется с помощью устройств:

1 - неподвижного первого линейного многоэлементного фотоприемника;

2 - подвижного второго многоэлементного фотоприемника, расположенного над левой боковой кромкой листового материала;

3 - подвижного третьего многоэлементного фотоприемника, расположенного над правой боковой кромкой листового материала;

4 - бесконтактного измерителя длины;

5 - устройства позиционирования (передвижения) второго подвижного фотоприемника, расположенного над левой боковой кромкой листового материала;

6 - устройства позиционирования (передвижения) третьего подвижного фотоприемника, расположенного над правой боковой кромкой листового материала;

7 - вычислительно-управляющего блока;

8 - направляющей преобразователя линейных перемещений.

Способ измерения осуществляется следующим образом.

Измеряемый лист 9 движется по рольгангу 10 со скоростью V. Контрастность кромки листа в зоне измерения обеспечивают прямой либо встречной подсветкой. При достижении листом зоны измерения L1 происходит предварительный замер координат положения боковых кромок листа 9 с помощью неподвижно первого линейного многоэлементного фотоприемника 1.

Эти координаты передают в вычислительно-управляющий блок 7, который выдает управляющие сигналы на устройства позиционирования 5 и 6. Под воздействием управляющих сигналов устройства позиционирования 5 и 6 перемещают закрепленные на них второй 2 и третий 3 линейные многоэлементные фотоприемники с зонами измерения соответственно L2 и L3, лежащими на одной оси, по направляющей преобразователя линейных перемещений 8 так, чтобы середина зоны измерения каждого из этих фотоприемников совпадала с предварительно измеренной координатой соответствующей боковой кромки листа 9. При этом, в общем случае, выполняют условия:

где S - расстояние (в мм) между осью измерения неподвижного первого фотоприемника 1 и осью измерения второго 2 и третьего 3 фотоприемников;

V - скорость перемещения (в мм/сек) измеряемого листа 9;

D2 - зона возможного перемещения (в мм) устройства позиционирования 5 с закрепленным на нем вторым фотоприемником 2 по направляющей 8;

V2 - скорость перемещения (в мм/сек) устройства позиционирования 5 с закрепленным на нем вторым фотоприемником 2 по направляющей 8;

D3 - зона возможного перемещения (в мм) устройства позиционирования 6 с закрепленным на нем третьим фотоприемником 3 по направляющей 8;

V3 - скорость перемещения (в мм/сек) устройства позиционирования 6 с закрепленным на нем третьим фотоприемником 3 по направляющей 8.

Выполнение этих условий необходимо для того, чтобы второй 2 и третий 3 фотоприемники успели занять необходимые позиции до того, как движущийся лист 9 достигнет оси измерения этих датчиков.

При достижении листом 9 зон измерения L2 и L3 со второго 2 и третьего 3 фотоприемников на вычислительно-управляющий блок 7 поступают значения окончательно измеренных координат боковых кромок листа.

При этом бесконтактный измеритель длины 4 передает текущее значение длины измеряемого листа на вычислительно-управляющий блок 7.

Так как в предлагаемом способе подвижные второй 2 и третий 3 фотоприемники в процессе замера располагают так, что середина зон измерения соответствует положению боковых кромок измеряемого листа, то оптические оси фотоприемников максимально приближены к нормалям N2 и N3, построенным из контролируемых точек, принадлежащих проекции кромок листа. В этом случае погрешность измерения, связанная с различной толщиной измеряемых листов, минимальна.

По результатам замеров, производимых во время движения листа вычислительно-управляющим блоком 7, строят математическую модель измеряемого листа, по которой находят его ширину и серповидность.

Координаты кромок листа вычисляют по выражениям:

для левой кромки: Xi1=n2*P2-Fi2*P2,

для правой кромки: Xi2=n22+C+Fi33,

где Fi2 - количество (в пикселях) затемненных при встречной подсветке (освещенных при прямой) фоточувствительных элементов второго фотоприемника 2, пропорциональное части листа, находящейся в зоне измерения второго фотоприемника для i-того замера;

Fi3 - количество (в пикселях) затемненных при встречной подсветке (освещенных при прямой) фоточувствительных элементов третьего фотоприемника 3, пропорциональное части листа, находящейся в зоне измерения третьего фотоприемника для i-того замера;

С - расстояние (в мм) между зонами измерения второго 2 и третьего 3 фотоприемников;

n2 - количество (в пикселях) фоточувствительных элементов линейного многоэлементного второго фотоприемника 2;

P2 - отношение зоны измерения второго фотоприемника 2 к количеству фоточувствительных элементов данного фотоприемника (мм/пиксель):

где L2 - зона измерения (в мм) второго фотоприемника;

i - номер замера;

P3 - отношение зоны измерения третьего фотоприемника 3 к количеству фоточувствительных элементов данного фотоприемника (мм/пиксель):

где L3 - зона измерения (в мм) второго фотоприемника,

по полученным результатам строят математическую модель, при этом ширину листа для каждого замера определяют как величину отрезка на математической модели листа между контролируемыми точками, принадлежащими кромкам листа, и вычисляют по выражению:

Si=Xi2-Xi1=Fi2*P2+C+Fi3*P3.

По оси «Y» откладываются равные промежутки длины листа, определенные при прохождении листа в зоне измерения.

Серповидность Δ1 и Δ2 для каждой кромки находится как наибольшее расстояние между точками, принадлежащими кромке модели листа, и отрезком, соединяющим точки X1 1 и Xk 1 - для левой кромки и X1 2 и Xk 2 - для правой кромки листа.

Частным случаем описываемого способа является его вариант, когда при наличии устройства позиционирования листа положение одной из его боковых кромок заранее определено. В этом случае зона первого фотоприемника 1 перекрывает зону возможного расположения второй кромки листа. Второй фотоприемник 2 закреплен неподвижно и контролирует известную зону расположения левой кромки листа. Третий фотоприемник 3 остается подвижным и контролирует зону правой кромки листа, расположение которой может меняться в зависимости от ширины листа. Все соотношения, приведенные для общего случая, здесь сохраняются.

Отличительной особенностью данного способа является применение точного позиционирования подвижных фотоприемников с использованием результатов предварительного замера координат неподвижным первым фотоприемником, вследствие чего повышается точность измерения ширины и серповидности листового материала независимо от его толщины. Применение второго и третьего подвижных фотоприемников позволяет обеспечить необходимую точность замера при любой ширине листа без увеличения числа фотоприемников. Все это позволяет оперативно контролировать и корректировать работу дисковых ножниц и другого технологического оборудования, повышая тем самым качество выпускаемой продукции.

Похожие патенты RU2278355C2

название год авторы номер документа
Способ получения виртуальных моделей сложнопрофильных криволинейных поверхностей 2023
  • Котляр Дмитрий Игоревич
  • Ломанов Алексей Николаевич
  • Медведев Евгений Юрьевич
  • Пшеничников Михаил Сергеевич
RU2813465C1
СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Шлычков Владимир Иванович
  • Кислицын Александр Устинович
  • Тоцкий Иван Тимофеевич
  • Мулахметов Ильгис Даудович
  • Сергеев Игорь Викторович
RU2419068C2
СПОСОБ ИЗМЕРЕНИЯ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ СТАЛЬНОГО ЛИСТА, ДВИЖУЩЕГОСЯ ПО РОЛЬГАНГУ, И ЛАЗЕРНАЯ ИЗМЕРИТЕЛЬНАЯ СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2016
  • Кириков Андрей Васильевич
  • Борисов Владимир Николаевич
  • Медведев Денис Дмитриевич
  • Данилов Михаил Викторович
RU2621490C1
СПОСОБ ОБНАРУЖЕНИЯ ПОВЕРХНОСТНЫХ ДЕФЕКТОВ ЦИЛИНДРИЧЕСКИХ ОБЪЕКТОВ 2006
  • Белобородов Алексей Вадимович
  • Гуляевский Сергей Евгеньевич
  • Загоруйко Николай Григорьевич
  • Зайцев Михаил Юрьевич
  • Коробко Владимир Иванович
  • Лавренюк Петр Иванович
  • Ладыгин Владимир Иванович
  • Финогенов Леонид Валентинович
  • Чугуй Юрий Васильевич
  • Шульман Юрий Семенович
RU2323492C2
Способ контроля качества объективов 2017
  • Кучумов Михаил Юрьевич
  • Карелин Андрей Юрьевич
  • Романовский Александр Борисович
RU2662492C1
ОПТИКО-ЭЛЕКТРОННЫЙ СПОСОБ ИЗМЕРЕНИЯ ДИАМЕТРА ЦИЛИНДРИЧЕСКОГО ОБЪЕКТА 2021
  • Двойнишников Сергей Владимирович
  • Меледин Владимир Генриевич
  • Бакакин Григорий Владимирович
  • Рахманов Виталий Владиславович
  • Семёнов Дмитрий Олегович
RU2783678C1
КООРДИНАТНО-ЧУВСТВИТЕЛЬНЫЙ ДАТЧИК МУЛЬТИСКАН 2009
  • Гук Елена Григорьевна
  • Подласкин Борис Георгиевич
RU2399117C1
УСТРОЙСТВО ДЛЯ ТРЕХМЕРНОЙ МАНИПУЛЯЦИИ 2008
  • Литманович Михаил Герцевич
  • Литманович Андрей Михайлович
RU2362216C1
Инструментальный способ обучения избирательной нейронной сети без математики и без учителя с использованием самоорганизации 2019
  • Мазуров Михаил Ефимович
RU2729878C2
Способ компенсации геометрического шума инфракрасных изображений 2018
  • Кудинов Игорь Алексеевич
  • Павлов Олег Вячеславович
  • Холопов Иван Сергеевич
RU2688616C1

Иллюстрации к изобретению RU 2 278 355 C2

Реферат патента 2006 года ОПТОЭЛЕКТРОННЫЙ СПОСОБ ИЗМЕРЕНИЯ ШИРИНЫ И СЕРПОВИДНОСТИ ДВИЖУЩЕГОСЯ ЛИСТОВОГО МАТЕРИАЛА

Способ включает построение математической модели листа, основанной на измеренных координатах точек боковых кромок листового материала с помощью линейных многоэлементных фотоприемников. Первоначально с помощью неподвижного первого линейного многоэлементного фотоприемника определяют координаты обеих боковых кромок листа, с помощью которых располагают подвижные второй и третий линейные многоэлементные фотоприемники над, соответственно, левой и правой кромками так, чтобы оптические оси фотоприемников были максимально приближены к нормалям, построенным из контролируемых точек, принадлежащих кромкам листа, по полученным результатам строят математическую модель, при этом ширину листа для каждого замера определяют как величину отрезка на математической модели листа между контролируемыми точками, принадлежащими кромкам листа, и вычисляют по заявленному выражению, а серповидность для обеих кромок определяют как наибольшее расстояние между кромкой модели листа и отрезком, соединяющим крайние точки каждой из боковых кромок модели листа. Технический результат - повышение точности и надежности измерения листового материала, повышение качества продукции. 2 ил.

Формула изобретения RU 2 278 355 C2

Оптоэлектронный способ измерения ширины и серповидности движущегося листового материала, включающий построение математической модели листа, основанной на измеренных координатах точек боковых кромок листового материала с помощью линейных многоэлементных фотоприемников, отличающийся тем, что первоначально с помощью неподвижного первого линейного многоэлементного фотоприемника определяют координаты обеих боковых кромок листа, с помощью которых располагают подвижные второй и третий линейные многоэлементные фотоприемники над соответственно левой и правой кромками так, чтобы оптические оси фотоприемников были максимально приближены к нормалям, построенным из контролируемых точек, принадлежащих кромкам листа, при этом координаты кромок листа вычисляют по выражениям:

для левой кромки: Xi1=n2·P2-Fi2·P2,

для правой кромки: Xi2=n2·Р2+С+Fi3·Р3,

где Fi2 - количество (в пикселях) затемненных при встречной подсветке (освещенных при прямой) фоточувствительных элементов второго фотоприемника, пропорциональное части листа, находящейся в зоне измерения второго фотоприемника для i-того замера;

Fi3 - количество (в пикселях) затемненных при встречной подсветке (освещенных при прямой) фоточувствительных элементов третьего фотоприемника, пропорциональное части листа, находящейся в зоне измерения третьего фотоприемника для i-того замера;

С - расстояние между зонами измерения второго и третьего фотоприемников, мм;

n2 - количество фоточувствительных элементов линейного многоэлементного второго фотоприемника, пиксели;

P2 - отношение зоны измерения второго фотоприемника к количеству фоточувствительных элементов данного фотоприемника, мм/пиксель;

i - номер замера;

Р3 - отношение зоны измерения третьего фотоприемника к количеству фоточувствительных элементов данного фотоприемника, мм/пиксель;

по полученным результатам строят математическую модель, при этом ширину листа для каждого замера определяют как величину отрезка на математической модели листа между контролируемыми точками, принадлежащими кромкам листа, и вычисляют по выражению:

Si=Xi2-Xi1=Fi2·P2+C+Fi3·P3,

а серповидность для обеих кромок определяют как наибольшее расстояние между кромкой модели листа и отрезком, соединяющим крайние точки каждой из боковых кромок модели листа.

Документы, цитированные в отчете о поиске Патент 2006 года RU2278355C2

ВСЕСОЮЗНАЯ 1«"^Т?11ТШ-Т1^йГКЩБИБЛ140Т?НД_Л. С, Ляшенко 0
SU335534A1
Устройство для измерения ширины полосы проката 1988
  • Бурдун Владимир Васильевич
  • Муканов Дмитрий
  • Нусупбеков Бекболат Ракишевич
  • Шайсултанов Хамит Жумажанович
SU1596212A1
Устройство для определенияпОлОжЕНия пРОКАТА 1979
  • Подуст Игорь Михайлович
  • Головко Игорь Максимович
SU801921A1
JP 11325852 A, 26.11.1999.

RU 2 278 355 C2

Авторы

Гейер Владимир Васильевич

Гончаров Михаил Юрьевич

Захарченко Андрей Юрьевич

Горковенко Павел Иванович

Шапиро Дмитрий Львович

Росляков Евгений Николаевич

Данилов Михаил Викторович

Смирнов Николай Валентинович

Даты

2006-06-20Публикация

2004-07-28Подача