Изобретение относится к области очистки промывных вод электрохимического и химического производств, в частности к технологии получения обессоленной воды реагентным методом с доочисткой ионным обменом с целью возврата ее для повторного применения, и может быть использовано в гальванических производствах, цветной металлургии, теплоэнергетике и других отраслях промышленности.
Известен способ обработки морской воды по А.С. №1724605 C 02 F 5/02, 1992, Б.И. №13, включающий реагентную обработку (добавление гидроокиси кальция), отделение осадка (осветление) и Na-катионирование.
Недостатком данного способа является то, что после реагентной обработки в осветленной воде остается много катионов кальция и анионов SO4 2.
Наиболее близким к заявляемому по технической сущности и достигаемому результату является способ получения воды по патенту РФ №2186736 кл. C 02 F 1/42; C 02 F 103/02, опубликованному 10.08.2002 г. (прототип) включающему реагентную обработку исходной воды известью или содой до рН 8,5÷11,6, отделение выпавшего осадка и пропускание осветленной воды через ионообменный фильтр с загрузкой карбоксильным катионитом.
Недостатком данного способа является то, что он имеет узкий диапазон технологических возможностей, в основном для умягчения воды, когда удаляются только катионы металлов.
Реагентная обработка известью промывных вод гальванических производств, содержащих катионы тяжелых металлов (никель, железо, медь) и анионы сильных кислот (серной, хромовой, фосфорной), не удаляет из воды анионы этих кислот и тем самым не снижает нагрузку на ионообменные смолы, что не увеличивает период работы до их регенерации. Кроме того, образующиеся гидроокиси никеля, железа, меди имеют структуру коллоидов и трудно отделяются от воды, что требует применения специального оборудования (фильтры, центрифуги).
Технический эффект изобретения - расширение технологических возможностей способа, увеличение периода работы смол до их регенерации, оптимизация структуры осадка для последующего отделения, сокращение расхода реагентов, упрощение технологии.
Указанный технический эффект достигается тем, что в способе очистки промывных вод гальванического производства, включающем осаждение реагентами катионов и анионов, отделение осадка и доочистку фильтрата ионообменными смолами, согласно заявляемому техническому решению в качестве реагента для осаждения используют насыщенный при комнатной температуре раствор гидроокиси бария в количестве, обеспечивающем значение рН промывных вод в интервале рН 7,8÷8,4, а отделение осадка производят отстаиванием.
Нами установлено, что при реагентной обработке промывной воды, содержащей катионы металлов Ni2+, Cu2+, Fe2+ и анионы SO4 2-, CrO4 2-, PO4 3-, насыщенным при комнатной температуре раствором гидроокиси бария до значения рН в интервале 7,8÷8,4 практически полностью удаляются из воды катионы металлов в виде осадков гидроокисей и анионы сильных кислот в виде осадка труднорастворимых солей бария. При этом соли бария (сульфат, хромат, фосфат) имеют кристаллическую структуру, легко осаждаются за счет большой атомной массы бария (137) и совместно с ними легко соосаждаются гидроокиси металлов. Небольшая остаточная концентрация в воде солей дочищается на ионообменных смолах, при этом нагрузка на них незначительная, и увеличение периода работы до их регенерации возрастает в 10 раз по сравнению с реагентной обработкой воды известью.
Способ реализуется следующим образом.
В промывную воду, содержащую катионы тяжелых металлов и анионы сильных кислот, добавляют насыщенный при комнатной температуре раствор гидроокиси бария в таких количествах, чтобы рН обработанной воды находился в интервале 7,8÷8,4. Из образовавшейся суспензии удаляют отстаиванием осадки гидроокисей металлов и соли бария сильных кислот (серной, фосфорной, хромовой). Осветленную воду пропускают последовательно через катионитовый фильтр с загрузкой катионита в Н форме и анионитовый фильтр с загрузкой анионита в ОН форме. В результате получают фильтрат - обессоленную воду с сопротивлением 1 МОм, которую можно повторно использовать для промывки деталей после всех операций технологического процесса нанесения покрытий.
В процессе фильтрации на катионите адсорбируются катионы бария, натрия и следы катионов тяжелых металлов, а на анионите - анионы соляной кислоты, борной и следы анионов серной, хромовой и фосфорной кислот. В связи с тем, что концентрация в промывной воде катионов бария, натрия и анионов соляной и борной кислот незначительны (менее 30 мг/л), цикл насыщения ионообменных смол длительный, и их регенерация производится редко, что сокращает расход реагентов и объем элюатов.
Пример.
Промывную воду с линии нанесения никелевого и хромового покрытия, содержащую Ni2+≈0,2 г/л, SO4 2-≈0,3 г/л, CrO4 2-≈0,3 г/л, Fe2+≈0,01 г/л, Cl-≈0,02 г/л с рН 2, обрабатывают насыщенным при комнатной температуре раствором гидроокиси бария (ГОСТ 4107-78) до значения рН 8,4. При этом доза гидроокиси бария составила 1 г на 1л исходной воды. Выделившийся осадок отделяют от жидкой фазы отстаиванием в течение 60 мин и получают осветленную воду следующего состава: Ni2+≈0,1 мг/л, SO4 2-≈1,0 мг/л, Ва2+≈1,0 мг/л, CrO4 2-≈0,5 мг/л, Fe2+≈1,0 мг/л, Cl-≈0,02 г/л. Осветленную воду пропускают последовательно через стеклянные колонки, в первую из которых загружен катионит КУ2-8 в Н- форме в количестве 100 см3, а во вторую - анионит АВ-17 в ОН- форме в количестве 100 см3.
Пропускание воды прекратили, когда сопротивление ее снизилось до 10 кОм. За это время через колонки было пропущено 130 л осветленной воды.
В случае реагентной обработки промывной воды гидроокисью бария до значения рН меньше 7,8 не происходит полноты осаждения гидроокисей металлов (никеля, железа), а при достижении рН более 8,4 в воде остается избыток катионов бария, что также увеличивает нагрузку на ионообменные смолы (см. таблицу 1).
Таким образом, использование в качестве реагента для осаждения насыщенного при комнатной температуре раствора гидроокиси бария в количестве, обеспечивающем значение рН промывных вод в интервале рН 7,8÷8,4, позволяет осаждать не только катионы металлов, но и анионы сильных кислот (SO4 -2, PO4 -3, CrO4 -2), что значительно расширяет технологические возможности способа, увеличивает период работы смол до их регенерации; при этом образующийся осадок гидроокисей металлов и солей бария вследствие кристаллического строения имеет оптимальную структуру, благодаря чему не требуется дорогостоящего оборудования для его осаждения, сокращается расход реагентов и упрощается технология.
название | год | авторы | номер документа |
---|---|---|---|
Способ утилизации кислого отработанного раствора гальванического производства | 2017 |
|
RU2687622C1 |
Способ замкнутого водооборота гальванического производства | 2020 |
|
RU2738105C1 |
СПОСОБ РЕАГЕНТНОЙ РЕГЕНЕРАЦИИ ЖИДКОСОЛЕВОГО НИТРИТ-НИТРАТНОГО ТЕПЛОНОСИТЕЛЯ | 2013 |
|
RU2526547C1 |
СПОСОБ ОЧИСТКИ ОТРАБОТАННОЙ ВОДЫ ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПРОИЗВОДСТВЕ БАЛЛИСТИТНОГО ПОРОХА | 2007 |
|
RU2339584C1 |
СПОСОБ ОЧИСТКИ ПРОМЫВНЫХ ВОД ОТ СОЛЕЙ МЕТАЛЛОВ | 1997 |
|
RU2133708C1 |
СПОСОБ ДЕЗАКТИВАЦИИ РАДИОАКТИВНЫХ ОТХОДОВ, ПОЧВ, ГРУНТОВ | 2006 |
|
RU2313148C1 |
СПОСОБ ОЧИСТКИ ЭЛЕКТРОЛИТА ХРОМИРОВАНИЯ НА ОСНОВЕ СОЕДИНЕНИЙ ШЕСТИВАЛЕНТНОГО ХРОМА ОТ ПРИМЕСИ КАТИОНОВ ТРЕХВАЛЕНТНОГО ЖЕЛЕЗА | 2012 |
|
RU2484186C1 |
Установка очистки стоков | 2020 |
|
RU2747102C1 |
СПОСОБ ПЕРЕРАБОТКИ ОТРАБОТАННЫХ РАСТВОРОВ, СОДЕРЖАЩИХ СОЕДИНЕНИЯ ШЕСТИВАЛЕНТНОГО ХРОМА | 1996 |
|
RU2110486C1 |
СПОСОБ ОЧИСТКИ МНОГОКОМПОНЕНТНЫХ ПРОМЫШЛЕННЫХ СТОЧНЫХ ВОД, СОДЕРЖАЩИХ ЦИНК И ХРОМ | 2022 |
|
RU2792510C1 |
Изобретение относится к области очистки промывных вод электрохимического и химического производства реагентным методом с доочисткой ионным обменом с целью возврата их в замкнутый цикл для повторного применения. Способ может быть использован в гальванических производствах, цветной металлургии, теплоэнергетике и других отраслях промышленности. Для осуществления способа промывные воды гальванического производства при нанесении двухслойного никель-хромового покрытия проводят осаждение катионов и анионов с помощью насыщенного при комнатной температуре раствора гидроокиси бария с последующим отделением осадка отстаиванием и доочистку осветленной воды, причем гидроокись бария добавляют в количестве, обеспечивающем остаточную концентрацию катионов металлов и анионов кислот менее 30 мг/л, в том числе катионов бария в количестве 0,8-1,0 мг/л, а доочистку осветленной воды проводят последовательно на катионите КУ-2, а затем на анионите АВ-17. Способ обеспечивает повышение степени очистки промывной воды, увеличение периода работы смол до их регенерации, оптимизацию структуры осадка для последующего отделения, сокращение расхода реагентов, упрощение технологии. 1 табл.
Способ очистки промывных вод гальванического производства при нанесении двухслойного никель-хромового покрытия, включающий осаждение катионов и анионов с помощью раствора гидроокиси бария с последующим отделением осадка отстаиванием и доочистку осветленной воды, отличающийся тем, что гидроокись бария добавляют в виде насыщенного при комнатной температуре раствора в количестве, обеспечивающем остаточную концентрацию катионов металлов и анионов кислот менее 30 мг/л, в том числе катионов бария в количестве 0,8-1,0 мг/л, а доочистку осветленной воды проводят последовательно на катионите КУ-2, а затем на анионите АВ-17.
RU 2075455 C1, 20.03.1997 | |||
СПОСОБ ПОЛУЧЕНИЯ ВОДЫ | 2000 |
|
RU2186736C1 |
Способ очистки сточных вод от шестивалентного хрома | 1982 |
|
SU1323537A1 |
СПОСОБ КОНДИЦИОНИРОВАНИЯ ОБОРОТНЫХ ВОД | 2002 |
|
RU2209776C1 |
Преобразователь угла поворота вала в код | 1984 |
|
SU1215176A1 |
US 5330658 A, 19.07.1994. |
Авторы
Даты
2006-11-27—Публикация
2004-10-18—Подача