Изобретение относится к медицине, в частности к составу, обладающему ранозаживляющим действием, а также способу его изготовления, и может применяться для лечения поражений кожи.
В настоящее время известен ряд ранозаживляющих препаратов в виде мазей, гелей, повязок, пластырей, присыпок и т.д. на основе антисептиков, обезболивающих и антибактериальных средств, природных и синтетических антиоксидантов, ферментов и т.д. Однако большинство используемых препаратов обладают однонаправленным действием. В то же время постоянно возникает необходимость в создании высокоэффективных полифункциональных лекарственных средств на полимерной основе.
В этом отношении металлы в виде наночастиц являются одним из перспективных претендентов на создание нового класса ранозаживляющих препаратов, поскольку наночастицы металлов обладают низкой токсичностью (в 7-50 раз меньшей, чем металлы в ионной форме) и пролонгированным действием. Наночастицы меди, цинка, серебра, а также оксида магния проявляют выраженный антибактериальный эффект [1-4].
Одними из наиболее изученных наночастиц являются наночастицы железа. Известно, что они обладают очень малой токсичностью. При пероральном введении водной суспензии наночастиц железа животным - мышам не наблюдалось признаков токсикоза вплоть до дозы 2000 мкг/кг массы тела. Длительное скармливание препарата не меняет картину крови у цыплят. В то же время введение наночастиц вызывает ускорение роста неполовозрелых животных. При скармливании препарата увеличивается яйценоскость кур, повышается устойчивость животных к стрессовым факторам, снижается заболеваемость у коров и телят [5]. Однако фармацевтические составы в виде мягкой лекарственной формы на основе наночастиц железа в литературе не описаны.
В литературе описана мазь, содержащая в качестве действующего начала синергетическую комбинацию антибиотика и металла - серебра или его соли [6]. Состав применяется для лечения ожоговых ран, а также ран, подверженных инфекции. Однако указание на применение металла в виде наночастиц в описании отсутствует.
Известна также 10% метилурациловая мазь - препарат, применяемый местно при ранах, ожогах, трофических язвах [7]. Состав включает действующее вещество - гетероциклическое соединение и основу. Среди недостатков указанной мази можно назвать тот факт, что мазь изготавливается на вазелин-ланолиновой основе, которая при нанесении на раневую поверхность образуют жирную пленку, тормозящую процессы регенерации тканей, в частности за счет блокады доступа кислорода к тканям. Вторым недостатком мази является низкая скорость высвобождения лекарственного вещества - метилурацила из жировой основы, таким образом в ране не создается нужная терапевтическая концентрация лекарственного вещества. Данные по исследованию фармакокинетики высвобождения метилурацила через полупроницаемую мембрану приведены в работе [8], где показано, что концентрация метилурацила в диализате составляет лишь 0.1%. Еще одним недостатком является наличие аллергических реакций на метилурацил у больных.
Задачей изобретения является разработка высокоэффективного ранозаживляющего состава, пролонгированного действия, и способа его изготовления.
Для решения поставленной задачи предлагается состав, который включает действующее вещество и основу, отличающийся тем, что в качестве действующего вещества содержит наночастицы железа. Предпочтительно наночастицы железа имеют размер 10-100 нм.
Основа подразумевает вспомогательные вещества, обычно применяемые в фармацевтической промышленности при изготовлении мягких лекарственных форм. В качестве основы состав предпочтительно включает смесь полиэтиленгликолей 400 и 1500 (ПЭГ-400 и ПЭГ-1500).
Предпочтительное соотношение ингредиентов состава:
наночастиц железа - 1-1000 мг
ПЭГ-400 - 30-95 г
ПЭГ-1500 - до 100 г
Заявленный состав характеризуется высокой ранозаживляющей активностью, пролонгированным действием и стабилен при хранении в течение не менее 2-х лет.
Наночастицы могут быть получены различными методами, например низкотемпературным восстановлением водородом [9] или методом температурной конденсации по Гену-Миллеру [10].
Согласно изобретению новый состав может дополнительно содержать глицерин.
Заявленный состав выполняют в виде мягкой лекарственной формы, например мазей или свечей, предпочтительно в виде мази.
Существует ряд требований, предъявляемых к мазям. Мази должны иметь мягкую консистенцию, которая обеспечила бы удобство нанесения их на кожу и слизистые оболочки и образование на поверхности ровной сплошной пленки. Для достижения необходимого терапевтического эффекта и точности дозирования лекарственные вещества в мазях должны быть максимально диспергированы и равномерно распределены по всей массе мази. Кроме того, мази, как и другие лекарственные формы, должны быть стабильны, не содержать механических включений. Их состав не должен изменяться при применении и хранении.
При изготовлении мазей обычно соблюдается стандартная схема приготовления: подготовка основы, подготовка лекарственных веществ (в частности, растворение в подходящем компоненте основы), введение лекарственных веществ в основу, гомогенизация мази [11].
При изготовлении мазей, основа которых состоит из нескольких компонентов, чаще всего начинают со сплавления компонентов основы, начиная с наиболее тугоплавкого, в расплавленной основе могут также растворять эмульгаторы и легкорастворимые компоненты мази.
Лекарственные вещества, особенно те, которые не растворимы в основе, предварительно измельчают с использованием различных технических средств, чаще всего различных мельниц. Затем к измельченным лекарственным веществам при перемешивании порциями добавляют расплавленную основу. Следующая стадия - стадия гомогенизации - является специфической для производства мазей в больших количествах, так как при перемешивании не всегда удается получить необходимую степень дисперсности лекарственных веществ. Для гомогенизации в производстве используют жерновые мельницы, валковые мазетерки. Конечными стадиями является стандартизация и фасовка мазей [11, 12, 13].
В качестве наиболее близкого к заявленному решению подходит способ приготовления мазей, описанный в патенте [13]. Согласно источнику, композиция для лечения ран и ожогов состава: этадена - 1,8-2,6 г, этония - 1,8-2,6 г, тримекаина - 2,0-5,0 г, полиэтиленоксида 400 - 60,0-80,0, полиэтиленоксида 1500 - 10,0-30,0, воды - до 100,0 г, готовилась по следующей технологии: этоний и тримекаин растворяли в воде, очищенной при (70±5)°С, полученный раствор добавляли к расплаву полиэтиленоксидов и охлаждали до комнатной температуры при перемешивании. Этаден растирали, затем добавляли примерно равное количество полученного мазевого концентрата, тщательно перемешивали и добавляли оставшийся мазевой концентрат.
При изготовлении мазей, содержащих наночастицы железа, применение вышеописанной технологии затруднено из-за невозможности равномерно смешать частицы железа с жидкой частью основы (в прототипе мазевой концентрат) путем растирания или с помощью обычных технических средств (мешалок). Это объясняется тем, что частицы железа, полученные химическим методом или методом температурной конденсации, представляют собой сухие, неоднородные, комковатые порошки, которые при добавлении в гидрофильные среды сохраняют адсорбированный воздух на своей поверхности, препятствующий смачиванию частиц и равномерному их распределению в жидкой фазе. Практически при внесении навески наночастиц в жидкую среду они либо продолжают плавать на поверхности, либо оседают на дно и при перемешивании суспензии не образуют. Аналогичная ситуация происходит и при добавлении порошков в гидрофобные среды. Поэтому применение известного способа приводит к неравномерному распределению наночастиц в основе, и таким образом осуществить точную дозировку препарата не представляется возможным.
Согласно изобретению предлагается на стадии подготовки лекарственных веществ осуществлять ультразвуковое диспергирование наночастиц железа с частью основы. Применение диспергирования позволяет улучшить смачиваемость наночастиц, а также получить наночастицы с размером 10-100 нм, что дает возможность увеличить удельную поверхность наночастиц и уменьшить массу отдельных частиц и, таким образом снизить скорость осаждения частиц в основе. Диспергирование осуществляется с помощью ультразвукового диспергатора, например, модели УЗДН-2Т. Таким образом, согласно изобретению способ получения ранозаживляющего состава включает ультразвуковое диспергирование смеси наночастиц железа с частью основы и последующее перемешивание полученной суспензии с оставшейся частью основы до однородного состояния.
Предпочтительно на 1-ом этапе проводится диспергирование наночастиц железа в жидком компоненте основы - ПЭГ-400, 2-й этап - смешение полученной суспензии наночастиц железа с оставшейся частью основы, которую предварительно расплавляют.
Важным условиям диспергирования является соблюдение температурного режима. Предпочтительно температура процесса не должна превышать 40°С. Более высокая температура может вызывать изменение физико-химических свойств наночастиц и изменение биологической активности препарата.
В случае приготовления мази заявленного состава способ приготовления иллюстрируется следующим примером, который дан только в целях пояснения.
Стадия 1
Диспергирование навески наночастиц железа в ПЭГ-400 (от 50 до 75% от массы ПЭГ-400 по прописи) при постоянном контроле температуры (не более 40°С) по следующей схеме: 30 сек - диспергирование, 1 мин - перерыв (3 цикла). Параметры диспергирования для диспергатора УЗДН-2Т - 44 кГц, 0.5 А. (Температура процесса зависит от объема диспергируемого раствора, модели диспергатора. В случае превышения температуры выше 40°С процесс необходимо вести при постоянном охлаждении раствора).
Стадия 2
Сплавление оставшейся части ПЭГ-400 с ПЭГ-1500 при температуре 80°С. Сплаву дают остыть до температуры 40°С.
Стадия 3.
Смешение на высокоскоростной мешалке суспензии наночастиц железа в ПЭГ-400 со сплавом ПЭГ, полученного на стадии 2.
Стадия 4.
Гомогенизация мази с помощью валковой мазетерки.
Полученный препарат представляет собой непрозрачную белую с сероватым оттенком массу, однородную по составу. Препарат стабилен при хранении в течение не менее 2-х лет.
При изменении соотношения ПЭГ в сторону увеличения содержания ПЭГ-400 мазь становится слишком жидкой, при увеличении содержания ПЭГ-1500 - слишком твердой, теряет способность намазываться.
Заявленный состав исследовали на наличие биологической активности на модели экспериментальной полнослойной раны.
Исследование ранозаживляющих свойств мазей проводили на взрослых мышах-самках линии SHK, массой 18-20 г. Мышей делили на группы по 7 животных в каждой. Под эфирным наркозом на спине у мышей выстригали шерсть, по трафарету наносили контуры раны (круг площадью 60 мм), и затем с помощью хирургических ножниц с закругленными концами вырезали лоскут кожи. Все раны оставляли открытыми вплоть до окончания опыта. Мышам опытной группы сразу же после операции (а в дальнейшем ежедневно) на поверхность раны наносили 0.2 г мази, содержащей наночастицы железа в разных концентрациях. Мышам контрольной группы с той же периодичность и в тех же количествах наносили основу (смесь ПЭГ в тех же соотношениях, что и в мази, содержащей наночастицы железа). Контуры раны 1 раз в двое суток (или чаще) зарисовывали на прозрачные пленки, которые затем сканировали на сканере Umax Astra 4500. Площадь раны рассчитывали с помощью компьютерной программы ImageJ 1.30v.
Для формализации биологического ответа на различные виды лечения по кинетическим кривым ранозаживления были рассчитаны периоды полузаживления ран. Этот показатель в группе, леченной 0.03% мазью с наночастицами железа, был на 60% меньше по сравнению с периодом полузаживления ран в контрольной группе (p<0.05, сравнение по критерию Стьюдента).
Средняя площадь ран мышей опытной группы, леченных 0.03% мазью с наночастицами железа, на 1-е сутки после операции была на 42.2% меньше средней площади ран мышей контрольной группы (p<0.01, сравнение по критерию Стьюдента), на 2-е сутки после операции - на 42.1% меньше (p<0.01, сравнение по критерию Стьюдента). Приведенные данные указывают на то, что мазь с наночастицами железа обладает высоким ранозаживляющим эффектом.
Конкретные примеры осуществления изобретения представлены в таблице.
Список литературы
1. Глущенко Н.Н., Богословская О.А., Ольховская И.П. // Химическая физика. 2002. Т.21. № 4. С.79-85.
2. Федоров Ю.И., Володина Л.А., Кузовникова Т.А. и др. // Известия Академии Наук СССР. Серия биологическая. 1983. № 6. С.948-950.
3. Lin Y.J., Li D.Q., Wang G., Huang L., Duan X. // J. Mater. Sci. Mater. Med. 2005. V.16 (1). P.53-56.
4. Международная заявка WO 2004/037187, 06.05.2004
5. Коваленко Л.В., Павлов Г.В., Фолманис Г.Э. и др. // Перспективные материалы. - 1998. - № 3. - С.62-67.
6. Патент США № 5374432, 20.12.1994.
7. Машковский М.Д. Лекарственные средства. М.: Медицина, 1995. т.2, 575 с.
8. Добровольский Ю.Н., Валитова Л.Н. Метилурацил-Дарница // Аптека. 1999. № 43 (214). С.22-29.
9. Патент РФ № 2058223, приоритет от 05.10.92.
10. Ген М.Я., Зискин М.С., Петров Ю.И. // Докл. АН СССР. - 1959. - Т.127. № 2. - С.366.
11. Технология лекарственных форм: Том 2 / Р.В.Бобылев, Г.П.Грядунова, Л.А.Иванова и др., под ред. Л.А.Ивановой. М.: Медицина, 1991. С.503-508.
12. Патент РФ № 2033788, приоритет от 30.12.92.
13. Патент РФ № 2164133, приоритет от 03.03.99.
название | год | авторы | номер документа |
---|---|---|---|
ПРЕПАРАТ, УСКОРЯЮЩИЙ РАНОЗАЖИВЛЕНИЕ | 2005 |
|
RU2306141C1 |
МЯГКАЯ ЛЕКАРСТВЕННАЯ ФОРМА | 2016 |
|
RU2647431C1 |
Ранозаживляющая мазь и способ ее получения | 2021 |
|
RU2791374C1 |
Лекарственное средство, обладающее ранозаживляющим действием | 2019 |
|
RU2712088C1 |
ЛЕКАРСТВЕННОЕ СРЕДСТВО, ОБЛАДАЮЩЕЕ РЕГЕНЕРИРУЮЩИМ И РАНОЗАЖИВЛЯЮЩИМ ДЕЙСТВИЕМ | 2000 |
|
RU2191574C2 |
Мягкая гемостатическая лекарственная форма с наночастицами | 2019 |
|
RU2711616C1 |
ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ ДЛЯ НАРУЖНОГО ПРИМЕНЕНИЯ "ОФЛОМЕЛИД" ПРИ ГНОЙНО-ВОСПАЛИТЕЛЬНЫХ ЗАБОЛЕВАНИЯХ | 2007 |
|
RU2349302C1 |
ПРОТИВОВОСПАЛИТЕЛЬНОЕ РАНОЗАЖИВЛЯЮЩЕЕ СРЕДСТВО | 2009 |
|
RU2424798C1 |
Противомикробная и ранозаживляющая лекарственная форма (варианты) и способ ее получения | 2019 |
|
RU2711643C1 |
РАНОЗАЖИВЛЯЮЩЕЕ СРЕДСТВО | 2008 |
|
RU2396972C2 |
Изобретение относится к медицине, в частности к средствам для лечения поражений кожи. Изобретение касается состава, содержащего: наночастиц железа - 0,001-1 г, ПЭГ-400 - 60-90 г, ПЭГ-1500 - до 100 г. Состав дополнительно может включать глицерин. Изобретение также касается способа приготовления заявленного состава, включающего ультразвуковое диспергирование наночастиц железа с жидкой частью основы; смешение полученной суспензии наночастиц железа с оставшейся частью основы. При этом температура проведения процесса не должна превышать 40°С. Заявленный состав характеризуется высокой ранозаживляющей активностью и стабильностью при хранении. 2 н. и 5 з.п. ф-лы, 1 табл.
БИОЛОГИЧЕСКИ АКТИВНЫЙ ПРЕПАРАТ | 1996 |
|
RU2123329C1 |
КОЛЛОИДНЫЙ РАСТВОР НАНОЧАСТИЦ МЕТАЛЛА, НАНОКОМПОЗИТЫ МЕТАЛЛ-ПОЛИМЕР И СПОСОБЫ ИХ ПОЛУЧЕНИЯ | 2002 |
|
RU2259871C2 |
JP 2005325353 А, 24.11.2005 | |||
CN 1695779 А, 16.11.2005 | |||
WO 2005060648 А2, 07.07.2005 | |||
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ МЕТАЛЛИЧЕСКИХ И МЕТАЛЛОКСИДНЫХ ЧАСТИЦ | 2004 |
|
RU2260500C1 |
Способ определения антикоагулянтной активности низко- и среднемолекулярной фракции плазмы крови | 1990 |
|
SU1758560A1 |
Авторы
Даты
2007-04-10—Публикация
2006-06-14—Подача