Изобретение относится к технологии нанесения наплавки лазерным лучом и может быть использовано в химическом и судовом машиностроении для увеличения коррозионной стойкости и износостойкости деталей машин и узлов, в частности судовой арматуры.
В настоящее время в химическом и судовом машиностроении используются коррозионно-стойкие чугуны и стали. Однако при наличии химически активной среды, например кислот или морской воды, коррозионная стойкость чугуна не удовлетворяет предъявляемым требованиям, так как детали выходят из строя задолго до окончания требуемого срока службы. Более того, условия эксплуатации деталей судовой арматуры в целом ряде случаев требуют, кроме высоких коррозионных свойств, также и высокой эрозионной стойкости и износостойкости. Требуемым сочетанием свойств обладают сплавы на Ni - Cr основе. Поэтому проблема повышения срока службы и восстановления деталей, подвергнутых коррозионному и эрозионному разрушению, может быть решена наплавкой Ni - Cr сплавов на детали из чугуна и стали. Одним из перспективных способов нанесения наплавки, обладающим высокой производительностью, является наплавка, наносимая лучом лазера, позволяющая обрабатывать труднодоступные места деталей.
Применение наплавки, наносимой лазерным лучом, сдерживается из-за образования в наплавленном слое дефектов типа пор и трещин.
В настоящее время известен ряд способов наплавки, производимых лазерным лучом: патенты США №4015100, 4299860, заявки Японии №57-38351, 57-109589, патент ЕПВ №0176942.
Однако при наплавке износостойкого порошка этим способом на чугун и высокоуглеродистые стали не удалось получить бездефектной наплавки. Трещины в наплавке связаны с образованием в переходной зоне боридов и карбидов хрома, охрупчивающих переходную зону.
Для предотвращения трещинообразования предлагалось вводить с состав хромборникелевого порошка Y-образующие добавки, например, феррованадия или ферросилиция (Грязев А.Н., Сафонов А.Н. Трещинообразование и микроструктура хромборникелевых сплавов, наплавленных с помощью лазера. Сварочное производство, 1986 г., №3, стр.6-8).
Однако полностью избежать трещин подобным способом не удалось.
Наиболее близким способом, принятым нами за прототип, является способ нанесения наплавки лазерным лучом, включающий предварительный нагрев детали до 300-400°С, получение слоя наплавки путем подачи порошка на обрабатываемую поверхность и облучение ее лучом лазера в течение 0,005-2,0 с. (Григорьянц А.Г. и др. Методы поверхностной лазерной обработки. Лазерная техника и технология, книга №3, 1987 г., стр.161, 165, 148).
Способ прототипа позволяет получать бездефектную наплавку на пластичных малоуглеродистых сталях.
Однако при наплавке на жесткую подложку - чугун или высокоуглеродистую сталь - наблюдается образование трещин в продольном и поперечном направлениях.
Техническим результатом изобретения является нанесение бездефектной износостойкой наплавки лазерным лучом на чугун и высокоуглеродистые стали.
Технический результат достигается за счет того, что в способе нанесения наплавки лучом лазера на детали из чугуна или стали, включающем предварительный нагрев детали до 300-400°С, получение слоя наплавки путем подачи порошка на обрабатываемую поверхность и облучение ее лучом лазера в течение 0,005-2,0 с, согласно изобретению перед нанесением слоя наплавки на поверхности детали формируют подслой путем подачи на обрабатываемую поверхность металлического порошка из материала с твердостью менее HRC 30 и облучения ее лучом лазера, при получении слоя наплавки в качестве порошка используют смесь порошков материала с твердостью более HRC 60 и металлического материала с твердостью менее HRC 30 в соотношении (3-4):1 соответственно, облучение проводят лучом лазера с плотностью мощности излучения 104-106 Вт/см2 таким образом, чтобы глубина проплавления подслоя составляла 0,3-0,7 его толщины, при этом отношение толщины слоя наплавки к толщине подслоя выдерживают в пределах (1-3):1, затем осуществляют отпуск при температуре 300±20°С с выдержкой в течение 1±0,2 ч с последующим охлаждением на воздухе. В частных случаях использования изобретения в качестве материала с твердостью более HRC 60 используют порошок карбидов, боридов, нитридов металлов или сплавы, содержащие упрочняющие фазы, а в качестве материала с твердостью менее HRC 30 используют порошок сплава ПН80Х20 или электролитического никеля.
Подслой из металлического порошка материала с твердостью менее HRC 30 вводят для релаксации термических напряжений, возникающих при воздействии лазерного луча, что устраняет образование поперечных трещин.
Но, кроме поперечных трещин, могут возникать и продольные, расположенные между валиками в местах их перекрытия. Для устранения продольных трещин необходимо уменьшить охрупчивающее воздействие упрочняющих фаз за счет образования «мягких» зон, способных релаксировать структурные и термические напряжения в наплавленном слое. Это достигается применением смеси порошков «твердого» материала с твердостью более HRC 60 и «мягкого» металлического материала с твердостью менее HRC 30, создающих в наплавленном слое зоны с высокой и низкой микротвердостью.
Экспериментально было установлено, что при соотношении в смеси порошков «твердой» и «мягкой» фракций больше чем 4:1 и глубине проплавления подслоя больше чем 0,7 его толщины наблюдается образование трещин вследствие недостаточной релаксации напряжений.
При соотношении в смеси порошков «твердой» и «мягкой» фракций меньше чем 3:1 и глубине проплавления подслоя меньше чем 0,3 его толщины ухудшаются износостойкие свойства наплавленного слоя.
В связи с этим оптимальное соотношение в смеси порошков «твердой» и «мягкой» фракций в процессе наплавки устанавливают в пределах от 3:1 до 4:1.
Последующие нагрев до температуры 300±20°С и выдержка в течение 1±0,2 ч после нанесения наплавки способствуют релаксации остаточных термических напряжений, возникших в процессе обработки лазерным лучом.
При соотношении толщины наплавки и подслоя менее чем 1:1 наплавленный слой становится неработоспособным из-за низкой твердости.
При соотношении толщины наплавки и подслоя больше чем 3:1 наблюдается появление трещин, так как толщина подслоя не достаточна для релаксации термических напряжений.
Время облучения обрабатываемой поверхности лучом лазера более 2 секунд при получении слоя наплавки приводит к полному выравниванию химического состава всей ванны расплава за счет термокапиллярной конвекции, что уменьшает релаксационные способности порошка «мягкой» фракции, а время облучения лучом лазера менее чем 0,005 секунд недостаточно для расплавления порошка «твердой» фракции и образования ванны расплава.
Пример конкретного выполнения: заготовки из чугуна и стали, содержащие в мас.% С-2,4 и 0,9 соответственно, были разрезаны на образцы - имитаторы деталей узла затвора арматуры. Перед обработкой образцы нагревали до температуры 400 и 300°С, температуру контролировали хромель-алюмелевой термопарой.
Затем наплавили подслой толщиной 3,5 мм из «мягкого» материала с твердостью менее HRC 30 на обрабатываемую поверхность. В первом и третьем случаях это был порошок сплава ПН80Х20, во втором - порошок электротехнического никеля.
Перед нанесением наплавки были приготовлены три смеси порошков.
Одна из них состояла из смеси порошков сплава ПН80Х20 с твердостью менее HRC 30 в качестве «мягкой» фракции и сплава ПГСР с твердостью более HRC 60 в качестве «твердой» фракции с соотношением 1:4 соответственно.
Вторая состояла из смеси порошков электролитического никеля с твердостью менее HRC 30 в качестве «мягкой» фракции и карбида хрома Cr3С2 с твердостью более HRC 60 в качестве «твердой» фракции с соотношением 1:3 соответственно.
Третья состояла из смеси порошков сплава ПН80Х20 с твердостью менее HRC 30 в качестве «мягкой» фракции и карбида титана TiC с твердостью более HRC 60 в качестве «твердой» фракции с соотношением 1:3 соответственно.
Лазерная наплавка производилась на лазерной установке ЛГН-702 мощностью до 800 Вт.
Смесь порошков подавалась на обрабатываемую поверхность через дозаторы.
Технологический блок обеспечивал перемещение деталей относительно оси луча лазера со скоростью 0,001 и 1,0 м/с. Плотность мощности излучения составляла 104 и 106 Вт/см2.
Толщина слоя наплавки составляла 2,5 мм, а подслоя - 1,5 мм, что соответствовало соотношению слоя наплавки к подслою 1,67:1.
Технологические параметры процесса обеспечивали проплавление подслоя на глубину 0,7 мм, что составляло 0,47 от толщины подслоя.
После нанесения наплавки образцы были подвергнуты отпуску при температуре 300°С с выдержкой в течение 1,2 и 0,8 ч с последующим охлаждением на воздухе.
Износостойкость наплавки определяли при возвратно-поступательном движении кубика по пластине со скоростью 10 мм/с и перемещении за один ход 10 мм.
Три имитатора были наплавлены по способу прототипа, остальные девять - по предлагаемому способу.
Контроль наплавленного слоя производили цветным (капиллярным) методом.
Результаты контроля и данные износостойкости наплавленных образцов приведены в таблице.
Технический эффект от использования предлагаемого изобретения выразится в повышении надежности и срока службы арматуры, работающей в агрессивной коррозионной среде и в условиях истирания.
Примечание:
1. В таблице приведены результаты испытаний и контроля по трем образцам на точку.
2. Перед обработкой лучом лазера образцы были нагреты до температуры 350°С.
3. Толщина наплавленного слоя сплава «мягкого» материала составляла 1,4 от глубины ванны расплава
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ФОРМИРОВАНИЯ ГРАДИЕНТНОГО ПОКРЫТИЯ МЕТОДОМ ЛАЗЕРНОЙ НАПЛАВКИ | 2018 |
|
RU2683612C1 |
Способ лазерной газопорошковой наплавки защитных покрытий | 2020 |
|
RU2759102C1 |
СПОСОБ ЛАЗЕРНОЙ НАПЛАВКИ МЕДНО-НИКЕЛЕВЫХ СПЛАВОВ НА ДЕТАЛИ ИЗ АЛЮМИНИЕВОЙ БРОНЗЫ | 2007 |
|
RU2359797C2 |
Способ лазерно-порошковой наплавки валов электродвигателя | 2020 |
|
RU2754335C1 |
Способ восстановления рабочих органов чизельных плугов | 2021 |
|
RU2763818C1 |
Способ восстановления рабочих органов газопламенной наплавкой | 2021 |
|
RU2756085C1 |
Способ восстановления долот чизельных плугов | 2021 |
|
RU2763817C1 |
Способ восстановления рабочих органов почвообрабатывающих орудий | 2021 |
|
RU2754670C1 |
Способ восстановления изношенных рабочих органов почвообрабатывающих машин | 2021 |
|
RU2762070C1 |
Способ восстановления рабочих органов почвообрабатывающих орудий с упрочнением | 2021 |
|
RU2756084C1 |
Изобретение относится к технологии нанесения наплавки лазерным лучом и может быть использовано в химическом и судовом машиностроении для увеличения коррозионной стойкости и износостойкости деталей машин и узлов, в частности судовой арматуры. Способ включает предварительный нагрев детали, формирование подслоя, получение слоя наплавки путем подачи порошка на обрабатываемую поверхность и облучения ее лучом лазера в течение 0,005-2,0 с. Предварительный нагрев детали проводят до 300-400°С. Формирование подслоя осуществляют путем подачи на обрабатываемую поверхность металлического порошка из материала с твердостью менее HRC30 и облучения ее лучом лазера. При получении слоя наплавки в качестве порошка используют смесь порошков материала с твердостью более HRC60 и металлического материала с твердостью менее HRC30 в соотношении (3-4):1 соответственно. Последующее облучение проводят лучом лазера с плотностью мощности излучения 104-106 Вт/см2 таким образом, чтобы глубина проплавления подслоя составляла 0,3-0,7 его толщины, при этом отношение толщины слоя наплавки к толщине подслоя выдерживают пределах (1-3):1. Отпуск осуществляют при температуре 300±20°С с выдержкой в течение 1±0,2 часа с последующим охлаждением на воздухе. Техническим результатом изобретения является нанесение бездефектной износостойкой наплавки лазерным лучом на чугун и высокоуглеродистые стали. 2 з.п. ф-лы, 1 табл.
ГРИГОРЬЯНЦ А.Г | |||
и др | |||
Методы поверхностной лазерной обработки | |||
- М.: Высшая школа, 1987, с | |||
Раздвижной паровозный золотник с подвижными по его скалке поршнями между упорными шайбами | 1922 |
|
SU148A1 |
СПОСОБ ЛАЗЕРНОЙ НАПЛАВКИ СТАЛЕЙ | 1992 |
|
RU2032512C1 |
СПОСОБ ЛАЗЕРНОЙ НАПЛАВКИ ИНСТРУМЕНТА | 1992 |
|
RU2032513C1 |
Способ лазерной химико-термической обработки деталей из сплавов на основе алюминия | 1989 |
|
SU1680471A1 |
US 4015100 A, 29.03.1977 | |||
JP 63224890 A, 19.09.1988. |
Авторы
Даты
2007-04-20—Публикация
2005-04-18—Подача