КАТОДНОЕ УСТРОЙСТВО ЭЛЕКТРОЛИЗЕРА ДЛЯ ПРОИЗВОДСТВА АЛЮМИНИЯ Российский патент 2007 года по МПК C25C3/08 

Описание патента на изобретение RU2299277C2

Изобретение относится к области цветной металлургии, в частности к электролитическому производству алюминия, а именно к конструкции катодного устройства электролизера для производства алюминия.

Известна катодная футеровка алюминиевого электролизера (Минцис М.Я., Поляков П.В., Сиразутдинов Г.А. Электрометаллургия алюминия. Новосибирск, Наука, 2001, с.201), которая содержит теплоизоляционные и огнеупорные слои, подовые блоки, бортовые блоки, примыкающие к кожуху через теплоизоляцию и фланцевый лист, который закрывает бортовые блоки сверху. Пространство между верхом бортовых блоков и фланцевым листом заполняется холоднонабивной массой.

Недостатком такой конструкции электролизера является плохой термический контакт между верхом бортовых блоков и фланцевым листом вследствие низкого коэффициента теплопроводности (3-6 Вт/(м·К)) холоднонабивной массы из-за вторичной пористости, обусловленной выходом летучих веществ. Это вызывает перегрев бортового блока, окисление его верхней части и химическую эрозию бортового блока из-за образования карбида алюминия.

Другим недостатком футеровки является повышенное окисление холоднонабивной массы в пространстве между верхом бортового блока и фланцевым листом.

Наиболее близкой к заявляемой катодной футеровке по технической сущности и достигаемому результату является катодное устройство электролизера для производства алюминия (патент РФ на полезную модель №27107, С25С 3/08, 2003).

В катодном устройстве электролизера для алюминия, включающем футерованный кожух, подовые и бортовые блоки, цоколь и фланцевый лист, в пространство между футеровкой и фланцевым листом положен огнеупорный кирпич, а места стыка уплотнены жаропрочной мастикой.

Недостатком прототипа является то, что огнеупорный кирпич, как правило, имеет высокое тепловое сопротивление (из-за низкого коэффициента теплопроводности (2-5 Вт/(м·К)), а места стыка, заполненные жаропрочной мастикой, имеют дополнительное термическое сопротивление. Это препятствует переносу теплоты от бортовой футеровки к фланцевому листу, вызывает перегрев футеровки и размывание гарнисажа, образованного застывшим электролитом на ее боковых стенках. В результате этого происходит износ бортовой футеровки и преждевременный выход электролизера из строя. Кроме того, недостатком является нетехнологичность операции уплотнения мест стыка с помощью жаропрочной мастики.

В основу изобретения положена задача разработки катодного устройства электролизера, конструкция которого обеспечивала бы увеличение срока службы электролизера, улучшение его показателей работы. Технический результат заключается в снижении теплового сопротивления между футеровкой и фланцевым листом путем применения высокотеплопроводной, устойчивой к воздействию агрессивных компонентов ванны набивной массы.

Поставленная задача решается тем, что в катодном устройстве электролизера для алюминия, включающем футерованный кожух, подовые и бортовые блоки, цоколь и фланцевый лист, подфланцевый зазор заполнен материалом в виде набивной массы на основе карбида кремния (SiC) с коэффициентом теплопроводности не менее 10 Вт/(м·К) и скоростью взаимодействия с криолитоглиноземным расплавом не более 10 г/(м2·час) и состоящей из 38-42% высококонцентрированной вяжущей суспензии (ВКВС), получаемой мокрым помолом, и наполнителя.

Предлагаемый способ дополняют частные отличительные признаки, направленные на решение поставленной задачи.

Карбид кремния, представляющий наполнитель, имеет следующий дисперсный состав, мас.%:

1,5-1,2 мм - 38±1;

1,2-0,6 мм - 26±1;

0,6-0,3 мм - 18±1;

0,3-0,1 мм - 18±1.

Дисперсный состав ВКВС из SiC не менее чем на 70% состоит из частиц размерами от 0 до 15 мкм.

Сопоставительный анализ признаков заявляемого решения и признаков аналога и прототипа свидетельствует о соответствии решения критерию «новизна».

Предлагаемая конструкция катодного устройства, по сравнению с прототипом, позволяет повысить его срок службы за счет интенсивного теплоотвода от бортовой футеровки к фланцевому листу, в результате чего формируется стабильный гарнисаж электролита на поверхности бортового блока, который защищает бортовой блок от воздействия электролита и окислителя воздуха.

Предлагаемые параметры являются оптимальными. Если коэффициент теплопроводности будет менее 10 Вт/(м·К), то тепловое сопротивление будет достаточно велико, и гарнисажа на бортовых блоках не будет, что и приведет к их перегреву и преждевременному разрушению.

Заявленная скорость взаимодействия с криолитоглиноземным расплавом является оптимальной и определяется сроком службы электролизера. Если она будет более 10 г/(м2·час), то произойдет преждевременное разрушение материала в подфланцевом зазоре. Если величина будет менее заявленной, то возрастает стоимость материала.

Заявленное содержание высококонцентрированной вяжущей суспензии (ВКВС), получаемой мокрым помолом (40±2%) является оптимальным. Если содержание будет большим, то растет стоимость материала, нарушается плотность упаковки и, как показывают результаты исследований, происходит снижение криолитоустойчивости. При меньшем содержании ВКВС падает прочность набивной массы, и она рассыпается. Заявленный дисперсный состав наполнителя является оптимальным. Он обеспечивает максимальную плотность набивной массы. Отклонение как в одну, так и другую сторону приводит к ее разуплотнению, увеличению пористости, что снижает коэффициент теплопроводности материала.

Сущность изобретения поясняется следующим графическим материалом, где: на фиг.1 изображена схема катодного устройства электролизера для производства алюминия; на фиг.2 - узел катодного устройства - подфланцевый зазор, заполненный набивной массой.

Изображенное на фигурах 1 и 2 катодное устройство электролизера для производства алюминия включает футерованный кожух 1, подовые 2 и бортовые 3 блоки, цоколь 4 и фланцевый лист 5, установленный над футеровкой 6 с под фланцевым зазором 7. Подфланцевый зазор заполнен огнеупорным, химически стойким материалом в виде набивной массы на основе карбида кремния.

Использование вышеописанного катодного устройство электролизера для производства алюминия позволит увеличить в среднем срок службы каждого алюминиевого электролизера на 1 год, что приведет к росту выпуска алюминия примерно на 400 тонн.

Похожие патенты RU2299277C2

название год авторы номер документа
СПОСОБ ФУТЕРОВКИ КАТОДНОГО УСТРОЙСТВА ЭЛЕКТРОЛИЗЕРА ДЛЯ ПОЛУЧЕНИЯ АЛЮМИНИЯ 2008
  • Прошкин Александр Владимирович
  • Пингин Виталий Валерьевич
RU2385972C1
СПОСОБ ФУТЕРОВКИ КАТОДА ЭЛЕКТРОЛИЗЕРА ДЛЯ ПОЛУЧЕНИЯ ПЕРВИЧНОГО АЛЮМИНИЯ 2016
  • Прошкин Александр Владимирович
  • Пингин Виталий Валерьевич
  • Нагибин Геннадий Ефимович
  • Сбитнев Андрей Геннадьевич
RU2621197C1
АЛЮМИНИЕВЫЙ ЭЛЕКТРОЛИЗЕР С ИСКУССТВЕННОЙ НАСТЫЛЬЮ 2015
  • Поляков Петр Васильевич
  • Архипов Геннадий Викторович
  • Зенкин Евгений Юрьевич
  • Михалев Юрий Глебович
  • Шайдулин Евгений Рашидович
  • Авдеев Юрий Олегович
RU2616754C1
СПОСОБ ФУТЕРОВКИ КАТОДНОГО УСТРОЙСТВА ЭЛЕКТРОЛИЗЕРА ДЛЯ ПОЛУЧЕНИЯ ПЕРВИЧНОГО АЛЮМИНИЯ (ВАРИАНТЫ) 2015
  • Прошкин Александр Владимирович
  • Левенсон Самуил Яковлевич
  • Пингин Виталий Валерьевич
  • Морозов Алексей Васильевич
  • Жердев Алексей Сергеевич
  • Сбитнев Андрей Геннадьевич
RU2614357C2
СПОСОБ ФУТЕРОВКИ КАТОДНОГО УСТРОЙСТВА ЭЛЕКТРОЛИЗЕРА ДЛЯ ПОЛУЧЕНИЯ АЛЮМИНИЯ 2020
  • Прошкин Александр Владимирович
  • Сбитнев Андрей Геннадьевич
  • Жердев Алексей Сергеевич
  • Пингин Виталий Валерьевич
  • Орлов Антон Сергеевич
RU2754560C1
СПОСОБ ФУТЕРОВКИ КАТОДНОГО УСТРОЙСТВА АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА 2005
  • Прошкин Александр Владимирович
  • Пингин Виталий Валерьевич
  • Тимофеев Виталий Сергеевич
  • Солдатенков Дмитрий Львович
  • Пивинский Юрий Ефимович
  • Буравов Анатолий Дмитриевич
  • Столбов Игорь Валерьевич
  • Дякин Павел Васильевич
RU2294403C1
СПОСОБ РЕЦИКЛИНГА ФУТЕРОВОЧНОГО МАТЕРИАЛА КАТОДНОГО УСТРОЙСТВА ЭЛЕКТРОЛИЗЕРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2019
  • Прошкин Александр Владимирович
  • Левенсон Самуил Яковлевич
  • Сбитнев Андрей Геннадьевич
  • Голдобин Вячеслав Андреевич
  • Морозов Алексей Васильевич
  • Пингин Виталий Валерьевич
  • Жердев Алексей Сергеевич
RU2727377C1
КАТОДНОЕ УСТРОЙСТВО ЭЛЕКТРОЛИЗЕРА ДЛЯ ПРОИЗВОДСТВА АЛЮМИНИЯ 2006
  • Бурцев Алексей Геннадьевич
  • Гусев Александр Олегович
  • Ржеудский Николай Августинович
RU2320782C1
СПОСОБ ПОДГОТОВКИ РЕЦИКЛИНГА НЕФОРМОВАННОГО ФУТЕРОВОЧНОГО МАТЕРИАЛА ИЗ КАТОДНОГО УСТРОЙСТВА ЭЛЕКТРОЛИЗЕРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2023
  • Прошкин Александр Владимирович
  • Пингин Виталий Валерьевич
  • Сбитнев Андрей Геннадьевич
  • Агафонов Денис Георгиевич
RU2804973C1
СПОСОБ ФУТЕРОВКИ КАТОДНОГО УСТРОЙСТВА ЭЛЕКТРОЛИЗЕРА 2015
  • Прошкин Александр Владимирович
  • Левенсон Самуил Яковлевич
  • Пингин Виталий Валерьевич
  • Морозов Алексей Васильевич
  • Калиновская Татьяна Григорьевна
  • Сбитнев Андрей Геннадьевич
RU2606374C1

Иллюстрации к изобретению RU 2 299 277 C2

Реферат патента 2007 года КАТОДНОЕ УСТРОЙСТВО ЭЛЕКТРОЛИЗЕРА ДЛЯ ПРОИЗВОДСТВА АЛЮМИНИЯ

Изобретение относится к области цветной металлургии, а именно к конструкции катодного устройства электролизера для производства алюминия. Технический результат заключается в снижении теплового сопротивления между футеровкой и фланцевым листом катодного устройства электролизера. Оно включает футерованный кожух, подовые и бортовые блоки, цоколь и фланцевый лист, пространство между футеровкой и фланцевым листом заполнено материалом в виде набивной массы на основе карбида кремния с коэффициентом теплопроводности не менее 10 Вт/(м·К) и скоростью взаимодействия с криолитоглиноземным расплавом не более 10 г/(м2·час). Карбид кремния представлен в виде смеси, состоящей из 40±2% высококонцентрированной вяжущей суспензии (ВКВС), получаемой мокрым помолом, и наполнителя. Дисперсный состав ВКВС из SiC не менее чем на 70% состоит из частиц размерами от 0 до 15 мкм. 2 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 299 277 C2

1. Катодное устройство электролизера для производства алюминия, включающее футерованный кожух, подовые и бортовые блоки, цоколь и фланцевый лист и имеющее подфланцевый зазор между футеровкой и фланцевым листом, заполненный огнеупорным, химически стойким материалом, отличающееся тем, что подфланцевый зазор заполнен материалом в виде набивной массы на основе карбида кремния с коэффициентом теплопроводности не менее 10 Вт/(м·К) и скоростью взаимодействия с криолитоглиноземным расплавом не более 10 г/(м2·ч) и состоящей из 38-42% высококонцентрированной вяжущей суспензии (ВКВС), получаемой мокрым помолом, и наполнителя.2. Катодное устройство по п.1, отличающееся тем, что наполнитель имеет следующий дисперсный состав, мас.%:

1,5-1,2 мм 38±1

1,2-0,6 мм 26±1

0,6-0,3 мм 18±1

0,3-0,1 мм 18±1

3. Катодное устройство по п.1, отличающееся тем, что дисперсный состав ВКВС не менее чем на 70% состоит из частиц от 0 до 15 мкм.

Документы, цитированные в отчете о поиске Патент 2007 года RU2299277C2

Устройство для апериодической трансформации частоты 1931
  • Мандельштам Л.И.
  • Папалекси Н.Д.
SU27107A1
КАТОДНОЕ УСТРОЙСТВО АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА 2001
  • Нечаев Г.П.
  • Лукин Н.А.
  • Зазулин А.И.
  • Желтухин Ю.И.
  • Каев С.Е.
RU2191224C1
US 4174972 A, 20.11.1979
УСТРОЙСТВО ДЛЯ РАЗДЕЛЕНИЯ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ 1996
  • Асриев Ю.И.
RU2103657C1
ЛОПАСТЬ ДЛЯ ВЕТРОВОДЯНЫХ ДВИГАТЕЛЕЙ С ПРИНУДИТЕЛЬНО ПОВОРАЧИВАЕМЫМИ ПЕРЬЯМИ ИЛИ ЛОПАСТЯМИ 1927
  • Дик А.Я.
SU20576A1
JP 60208490 A, 21.10.1985.

RU 2 299 277 C2

Авторы

Прошкин Александр Владимирович

Пингин Виталий Валерьевич

Тимофеев Виталий Сергеевич

Пивинский Юрий Ефимович

Буравов Анатолий Дмитриевич

Столбов Игорь Валерьевич

Борисов Василий Иванович

Даты

2007-05-20Публикация

2005-06-22Подача