Изобретение относится к металлургии, в частности к производству магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в автоприборостроении, релейной технике, электромашиностроении, медицине и т.д..
Магнитотвердые сплавы на основе системы Fe-Cr-Co обладают многими преимуществами перед другими магнитотвердыми сплавами: поддаются всем видам пластической и лезвийной обработки (прокатке, волочению, прессованию, токарной обработке, фрезерованию, штамповке и т.д.), обладают высокой прочностью (до 1000 МПа), высокой температурно-временной стабильностью (ТКИ=0,022%/°С). Одним из недостатков этих сплавов является большая длительность термической обработки (˜24 часа). Этот недостаток обусловлен относительно низким температурным интервалом (650-500°С) распада высокотемпературного α твердого раствора на смесь двух фаз: α1-фазу, обогащенную железом и кобальтом, и α2-фазу, обогащенную хромом, в процессе формирования высококоэрцитивного состояния.
Известно, что стандартная термообработка FeCrCo сплавов состоит из гомогенизации при 1150-1300°С, закалки на α твердый раствор, изотермической термомагнитной обработки при 630-660°С (в случае получения магнитоизотропных магнитов используют изотермическую термообработку) и ступенчатого отпуска в температурном интервале 620-520°С с последовательным снижением температуры отпуска каждой ступени на 20-30°С. Отпуск при 500°С в течение суток практически не дает прироста магнитных свойств (ГОСТ 24897-81, патент США №4194932, МКИ H01F 1/04; НКИ 148/108, 148/31.57; заявл. 7.02.78 г., опубл. 25.03.80 г.) прототип.
Известен способ термической обработки магнитотвердых сплавов на основе железа, включающий гомогенизацию, закалку, изотермическую обработку и отпуск с термоциклированием с нагревом до 620-625°С и охлаждением до 550°С в количестве циклов 4-5 (SU 985071 A, C21D 1/04, 30.12.1982, 4c.).
Предлагаемое изобретение направлено как на снижение длительности термической обработки, так и на увеличение выхода годной продукции путем применения циклической термической обработки на заключительной ступени отпуска, которая дает прирост магнитных свойств обрабатываемых магнитов (на 3-5%) и повышает выход годной продукции.
Сущность изобретения заключается в том, что термообработка магнитотвердых сплавов на основе железа (в частности, на основе системы Fe-Cr-Co), включающая гомогенизацию, закалку, изотермическую термомагнитную обработку и многоступенчатый отпуск, согласно предложению на заключительной стадии проводят термоциклирование в интервале 510-470°С в количеством циклов 3-5.
Пример. Постоянные магниты в количестве 164 шт. из сплава 25Х15КА были обработаны по стандартному режиму, включающему гомогенизацию при 1200°С в течение часа и закалку в воде от этой температуры. Затем постоянные магниты подвергали изотермической термомагнитной обработке при 640°С в течение 1 ч с последующим ступенчатым отпуском: 620°С(1 ч)+600°С(1 ч)+580°С(2 ч)+560°С(3 ч)+520°С(4 ч)+500°С(10 ч).
На фиг.1 приведено распределение магнитов по коэрцитивной силе после проведения стандартной термической обработки, имеющих поток Ф=27-29,5 мкВб (т.е. отбракованных по потоку).
На фиг.2 приведено распределение магнитов по коэрцитивной силе после проведения стандартной термической обработки, имеющих поток Ф=30-32 мкВб (т.е. годных по потоку).
На фиг.3 приведено распределение магнитов по коэрцитивной силе после проведения дополнительного отпуска при 480°С в течение 24 ч, имеющих поток Ф=27-29,5 мкВб.
На фиг.4 приведено распределение магнитов по коэрцитивной силе после проведения дополнительного отпуска при 480°С в течение 24 ч, имеющих поток Ф=30-32 мкВб.
На фиг.5 приведено распределение магнитов по коэрцитивной силе после проведения дополнительной термоциклической обработки в интервале 510-470°С (в течение ˜5 ч в количестве 3-х циклов), имеющих поток Ф=27-29,5 мкВб.
На фиг.6 приведено распределение магнитов по коэрцитивной силе после проведения дополнительной термоциклической обработки в интервале 510-470°С (в течение ˜5 ч в количестве 3-х циклов), имеющих поток Ф=30-32 мкВб.
Магниты из сплава 25Х15КА (ГОСТ 24897-81) в количестве 164 шт., которые по ТУ должны иметь поток ≥30 мкВб и коэрцитивную силу НсМ≥40 кА/м, после термообработки в контейнере по режиму термической обработки, оканчивающейся отпуском при 500°С (20 часов), дали следующие результаты: 119 магнитов были годные как до потоку, так и по коэрцитивной силе. Из 45 отбракованных магнитов 31 магнит не соответствовал по коэрцитивной силе и 43 магнита не соответствовали по потоку (см. фиг.1 и 2).
Поток Ф=27-29,5 мкВб (табл.1).
N=43 шт. Среднее =39,4 кА/м; мин.=35,1; макс.=42,8; дисперсия =3,29; станд. отклонение=1,81; станд. ошибка среднего =0,3.
Поток Ф=30 -32 мкВб (табл.2).
N=121 шт. Среднее=42,9 кА/м; мин.=39,2; макс.=45,7 кА/м; дисперсия=1,758; стан. отклонение=1,32; стандартн. ошибка среднего=0,12; =-0,14.
Дополнительный отпуск магнитов при 480°С в течение 24 ч практически не приводит к изменению их магнитных свойств (фиг.3 и 4).
Поток Ф=27-29,5 мкВб (табл.3).
N=43 шт. Среднее=39,4 кА/м; мин.=35,1; макс.=42,8; дисперсия =3,31; станд. Отклонение=1,82; станд. ошибка среднего=0,3; асимм.=-0,47; эксцесс=-0,22.
Все 43 магнита по-прежнему не соответствовали ТУ по величине потока.
Поток Ф=30-32 мкВб (табл.4).
N=121 шт. Среднее=42,9 кА/м; мин.=40,5; макс.=45,7 кА/м; дисперсия=1,57; стан. отклонение=1,255; стандартн. ошибка среднего=0,11; асимм.=0,10: эксцесс=-0.74.
Однако применение циклической термообработки в интервале 510-470°С (цикл: 510°С охлаждение в течение 40 мин до 470°С + нагрев до 510°С в течение 40 мин) в количестве 3-х циклов дало значимое повышение магнитных свойств, особенно для магнитов с пониженным потоком (фиг.5)
Поток Ф=27-29,5 мкВб (табл.5).
N=43 шт. Среднее=39,9 кА/м; мин.=37,1; макс.=42,6; дисперсия=2,435; станд. отклон.=1,56; станд. ошибка среднего=0,24; асимм.=0,08; эксцесс=-1,05.
Поток Ф=30 -32 мкВб (табл.6).
N=121 шт. Среднее=43,2 кА/м; мин.=40,5; макс.=46, 6 кА/м; дисперсия=1,74; стан. отклонение=1,32; стандартн. ошибка среднего=0,12; асимм.=-0,045; эксцесс=-0
Из 43 магнитов 21 магнит стал годным как по потоку, так и по коэрцитивной силе (т.е. почти 50% отбракованных магнитов удалось довести до требуемых по ТУ параметров).
Аналогичная циклическая термообработка 121 магнита (которые были годны по потоку) в температурном интервале 510-470°С приводит к заметному повышению коэрцитивной силы (вплоть до 46,5 кА/м).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МАГНИТОТВЁРДЫХ СПЛАВОВ НА ОСНОВЕ СИСТЕМЫ ЖЕЛЕЗО-ХРОМ-КОБАЛЬТ | 2003 |
|
RU2238985C1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МАГНИТОТВЕРДЫХ СПЛАВОВ СИСТЕМЫ ЖЕЛЕЗО-ХРОМ-КОБАЛЬТ | 2012 |
|
RU2511136C2 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕФОРМИРУЕМЫХ МАГНИТОТВЕРДЫХ СПЛАВОВ НА ОСНОВЕ СИСТЕМЫ ЖЕЛЕЗО-ХРОМ-КОБАЛЬТ | 2012 |
|
RU2495140C1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ПОРОШКОВОГО МАГНИТОТВЁРДОГО СПЛАВА Fe-30Cr-16Co-0,5Sm | 2022 |
|
RU2790847C1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МАГНИТОТВЕРДЫХ СПЛАВОВ СИСТЕМЫ ЖЕЛЕЗО-ХРОМ-КОБАЛЬТ С СОДЕРЖАНИЕМ КОБАЛЬТА 8 ВЕС.% | 2014 |
|
RU2557852C1 |
Способ обработки магнитотвердыхСплАВОВ HA OCHOBE жЕлЕзА | 1977 |
|
SU834153A1 |
СПЛАВ НА ОСНОВЕ ЖЕЛЕЗА И СПОСОБ ЕГО ПРОИЗВОДСТВА | 2003 |
|
RU2238996C1 |
СПОСОБ ОБРАБОТКИ МАГНИТОТВЕРДЫХ СПЛАВОВ НА ОСНОВЕ СИСТЕМЫ ЖЕЛЕЗО-ХРОМ-КОБАЛЬТ | 2005 |
|
RU2281339C1 |
Магнитный сплав | 1989 |
|
SU1717664A1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОГО МАГНИТОТВЁРДОГО СПЛАВА 30Х20К2М2В СИСТЕМЫ ЖЕЛЕЗО-ХРОМ-КОБАЛЬТ | 2015 |
|
RU2607074C1 |
Изобретение относится к металлургии, в частности к производству магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в автоприборостроении, релейной технике, электромашиностроении, медицине и т.д. Для повышения магнитных свойств обрабатываемых постоянных магнитов на 3-5% и выхода годной продукции магнит из сплава 25Х15КА подвергают гомогенизации, закалке, термомагнитной (термической) обработке, многоступенчатому отпуску и термоциклической обработке в интервале 510-470°С в количестве 3-5 циклов на заключительной стадии отпуска. 6 ил., 6 табл.
Способ термической обработки магнитотвердых сплавов на основе железа, включающий гомогенизацию, закалку, изотермическую термомагнитную обработку и многоступенчатый отпуск, отличающийся тем, что на заключительной ступени отпуска проводят термоциклирование в интервале температур 510-470°С с количеством циклов 3-5.
US 4194932 A, 25.03.1980 | |||
Способ термообработки постоянных магнитов | 1980 |
|
SU985071A1 |
Способ термической обработки магнитотвердых сплавов на основе системы железо-хром-кобальт | 1976 |
|
SU580230A1 |
Способ термической обработки железохромокобальтовых сплавов | 1988 |
|
SU1544816A1 |
Способ термической обработки железо-хром-кобальтовых сплавов | 1988 |
|
SU1627570A1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МАГНИТОТВЁРДЫХ СПЛАВОВ НА ОСНОВЕ СИСТЕМЫ ЖЕЛЕЗО-ХРОМ-КОБАЛЬТ | 2003 |
|
RU2238985C1 |
Авторы
Даты
2007-09-10—Публикация
2006-02-13—Подача