Изобретение относится к области металлургии сплавов на основе алюминия, в частности к сплаву системы алюминий - медь - магний - литий, применяемому для изготовления полуфабрикатов и изделий из него, используемых в качестве конструкционных материалов для авиакосмической техники.
Известно, что алюминий - литиевые сплавы обладают уникальным сочетанием механических свойств, а именно малой плотностью, повышенным модулем упругости и достаточно высокими прочностными характеристиками. Наличие указанных свойств дает возможность использовать сплавы этой системы в качестве конструкционного материала для авиакосмической техники, что позволяет улучшить ряд летно-технических характеристик летательных аппаратов, в частности снижение массы аппаратов, экономия горючего, увеличение грузоподъемности.
Однако алюминий - литиевые сплавы обладают одним недостатком низкой пластичностью в состояниях близких к максимальной прочности (Н.И.Фридляндер., К.В.Чуистов, А.Л.Березина, Н.И.Колобнев. Алюминий-литиевые сплавы. Структура и свойства., Киев: Наук. думка, 1992, с.177).
Известен сплав на основе алюминия, содержащий, мас.%:
(Авторское свидетельство СССР №1767916, МКИ С22С 21/16, дата публикации 1997.08.20).
Недостатками указанного сплава являются его низкая технологичность, высокая трудоемкость изготовления и низкие выходы годного при изготовлении полуфабрикатов и изделий из него, невозможность получения из него тонких листов, тонкостенных профилей и штамповок.
К причинам, обуславливающим возникновение указанных выше недостатков при использовании известного сплава, относится то, что в известном сплаве относительно высокое содержание меди отрицательно влияет на горячеломкость и пластичность при обработке давлением, что приводит к повышенному трещинообразованию, повышенной отбраковке по зажимам и неплоскостности при отделочных операциях, а именно при прогладке и правке полуфабрикатов.
Известен сплав на основе алюминия - 8093 (обозначение сплава находится в соответствии с номерами сплавов и соответствует определениям, зарегистрированным Алюминиевой ассоциацией, Вашингтон, США) содержащий, мас.%:
(Международное обозначение сплавов и пределы химического состава деформируемых алюминия и алюминиевых сплавов. Алюминиевая ассоциация: 2004, с.12, 13).
Недостатками указанного сплава являются повышенная стоимость сплава, его низкая технологичность, высокая трудоемкость изготовления и низкие выходы годного при изготовлении полуфабрикатов и изделий из него, невозможность получения из него тонких листов, тонкостенных профилей и штамповок.
К причинам, обуславливающим возникновение указанных выше недостатков при использовании известного сплава, относится то, что в известном сплаве повышенное содержание лития, имеющего высокую стоимость, кроме того, повышенное содержания лития приводит к образованию упрочняющих фаз, несколько повышающих прочностные характеристики сплава, но при этом значительно снижающих его пластичность при литье и обработке давлением, что приводит к повышенному трещинообразованию, повышенной отбраковке по зажимам и неплоскостности при отделочных операциях, а именно при прогладке и правке полуфабрикатов.
Наиболее близким сплавом по химическому составу и назначению к заявленному сплаву на основе алюминия является сплав, содержащий, мас.%:
(Патент РФ №2180928, МПК 7 С22С 21/00, С22С 21/16, дата публикации 2002.03.27).
Недостатком указанного сплава, принятого за прототип, являются его относительно низкая технологичность, высокая трудоемкость изготовления и низкие выходы годного при изготовлении полуфабрикатов и изделий из него, невозможность получения из него тонких листов, тонкостенных профилей и штамповок.
К причинам, обуславливающим возникновение указанных выше недостатков при использовании известного сплава, принятого за прототип, относится то, что известный сплав характеризуется повышенным содержание меди, что отрицательно влияет на горячеломкость и пластичность при обработке давлением, что приводит к повышенному трещинообразованию, повышенной отбраковке по зажимам и неплоскостности при отделочных операциях, а именно при прогладке и правке полуфабрикатов, более того, повышенное содержание натрия и галлия приводит к значительному увеличению горячеломкости сплава, еще большему снижению его пластических характеристик (А.В.Курдюмов, С.В.Инкин, B.C.Чулков, Г.Г.Шадрин. Металлические примеси в алюминиевых сплавах. - М.: Металлургия. 1988, с.90, 99), что значительно усложняет задачу получения годных слитков и последующего получения полуфабрикатов различными видами обработки давлением, а также проведение качественной плакировки катаных полуфабрикатов вследствие образования на их поверхности значительных участков неприварившейся плакировки.
Задача, на решение которой направлено изобретение, заключается в разработке сплава на основе алюминия, предназначенного для изготовления из него полуфабрикатов и изделий для авиакосмической техники, свободных от недостатков, перечисленных выше и присущих известным техническим решениям.
Технический результат, достигаемый при осуществлении изобретения, заключается в получении сплава, обладающего повышенной пластичностью, что позволит повысить его технологичность, увеличить выход годного при изготовлении полуфабрикатов и изделий, обеспечить возможность производства тонких листов, тонкостенных профилей и штамповок при снижении трудоемкости производства, при сохранении требуемых прочностных и эксплуатационных характеристик сплава, а также полуфабрикатов и изделий из него, предъявляемых к конструкционным материалам для авиакосмической техники.
Поставленная задача с достижением упомянутого технического результата при осуществлении изобретения решается тем, что известный сплав на основе алюминия, содержащий литий, медь, магний, цирконий, бериллий, титан, никель, марганец, галлий, цинк, натрий, дополнительно содержит кальций и по крайней мере один элемент, выбранный из группы, включающей ванадий и скандий, при следующем соотношении компонентов, мас.%:
По крайней мере один элемент, выбранный из группы, включающей:
Сплав на основе алюминия, используемый для изготовления полуфабрикатов и изделий, отличается от прототипа как количественно (пониженное содержание меди, галлия и натрия), так и качественно (дополнительно содержит кальций и по крайней мере один элемент, выбранный из группы, включающей ванадий и скандий).
Авторы установили, что повышенное содержание меди приводит к образованию внутри зерен и на их границах грубых интерметаллидов неправильной формы, являющихся медьсодержащими фазами, образующимися при кристаллизации сплава в участках с повышенным содержанием меди. Данные фазы представляют не отдельные частицы, а обширные скопления, затрудняющие сдвиговые деформации в процессе обработки давлением, что приводит к значительному снижению пластичности сплава.
Снижение содержания меди в сплаве до пределов 1,3-1,5 мас.% позволяет практически полностью перевести ее в твердый раствор, что приводит к значительному уменьшению объемной доли грубых интерметаллидов медьсодержащих фаз, что было установлено электронно-микроскопическим исследованием сплава, и как следствие повышению пластичности сплава. Снижение содержания меди ниже 1,3 мас.% не повлияет на повышение характеристик пластичности сплава, но значительно снизит его прочностные характеристики.
Дополнительно установили, что галлий и натрий не образуют фаз с алюминием и скапливаются на границе зерна, что приводит к хрупкому разрушению по границе зерна в процессах кристаллизации сплава и его обработки давлением.
Авторами установлено, что при содержании галлия и натрия ниже 0,001 и 0,0005 мас.% соответственно они практически полностью растворяются в твердом растворе, что приводит к повышению пластичности сплава.
Кальций в количестве 0,005-0,02 мас.% является добавкой, связывающей избыточный натрий и другие примесные элементы сплава, приводящей к образованию более округлой формы выделяющихся интерметаллидов и их коагуляции, что приводит к более благоприятным условиям сдвиговой деформации и, как следствие, повышению технологической пластичности сплава.
Введение одного или более элементов из группы ванадия, скандия в указанных количествах способствует формированию однородной мелкозернистой структуры, что способствует усилению роли циркония как модифицирующей добавки, обеспечивающей структурное упрочнение полуфабрикатов и изделий из сплава, что позволяет достичь необходимого уровня прочностных свойств сплава.
Из предложенного сплава на основе алюминия могут быть изготовлены различные полуфабрикаты: листы и плиты, штамповки, прессованные изделия. Из полуфабрикатов предложенного сплава могут быть получены различные изделия, например панели для обшивки фюзеляжных конструкций летательных аппаратов, элементы силового набора, сварные топливные баки и другие элементы авиакосмической техники.
В предложенном изделии, выполненном из сплава на основе алюминия, используемого для изготовления полуфабрикатов, технический результат достигается тем, что в качестве материала заготовки используется сплав при следующем соотношении компонентов, мас.%: литий 1,6-1,9; медь 1,3-1,5; магний 0,7-1,1; цирконий 0,04-0,2; бериллий 0,02-0,2; титан 0,01-0,1; никель 0,01-0,15; марганец 0,01-0,2; галлий до 0,001; цинк 0,01-0,3; натрий до 0,0005; кальций 0,005-0,02; и по крайней мере один элемент, выбранный из группы, включающей ванадий 0,005-0,01 и скандий 0,005-0,01; алюминий - остальное.
Пример осуществления
В промышленных условиях из каждого сплава, химический состав которых приведен в таблице 1, были отлиты плоский слиток сечением 300×1100 мм и круглые слитки диаметрами 190 и 350 мм.
Сплав №1 соответствует сплаву, принятому в качестве прототипа, сплавы №2, 3, 4 соответствуют предлагаемому.
Плавление шихты, рафинирование и литье слитков производили при температуре 710-730°С.
Пример 1
В дальнейшем из плоских слитков каждого сплава были изготовлены плакированные листы. Листы изготавливались по одной технологической схеме путем горячей прокатки при температуре 430°С до толщины 6,5 мм со сверткой в рулоны и затем после отжига при температуре 400°С путем холодной прокатки.
Следует отметить, что лист из сплава №1 удалось прокатать только до толщины 0,9 мм и дальнейший прокат был остановлен из-за наличия на боковых кромках листа рванин глубиной более 30 мм и наличия в рулоне двух обрывов.
Листы из сплавов №2, 3, 4 были прокатаны без обрывов до толщины 0,5 мм.
Дальнейшие отделочные операции прогладка и правка листов растяжением из сплавов №2, 3, 4 в сравнении со сплавом №1 несмотря на их меньшую толщину прошли более успешно и с меньшей отбраковкой на окончательной приемке по дефектам: зажимы, неплоскостность и трещины.
Выход годного при производстве листов из сплавов №2, 3, 4 был выше на 30%, чем из сплава №1.
В дальнейшем образцы из листов №1, 2, 3, 4 испытали при статическом растяжении с определением предела прочности (σв), предела текучести (σ0,2), относительного удлинения (δ, %).
Образцы вырезались вдоль, поперек и под углом 45° относительно направления прокатки.
Результаты механических испытаний представлены в таблице 2.
Из таблицы 2 видно, что предлагаемый сплав превосходит известный сплав (прототип) по характеристикам пластичности при сохранении требуемых прочностных характеристик.
Пример 2
Из круглых слитков диаметром 190 мм каждого сплава были изготовлены профили (уголки с толщиной полок до 5 мм).
Профили из разных сплавов изготавливались по одной технологической схеме путем прессования при температуре 400°С, с последующей закалкой профилей в воде и старением при температуре 150°С в течение 24 часов.
Выход годного при производстве профилей из сплавов №2, 3, 4 был выше на 15%, чем из сплава №1.
Пример 3
Из круглых слитков диаметром 350 мм каждого сплава были изготовлены штамповки толщиной стенки 40 мм.
Штамповки из разных сплавов изготавливались по одной технологической схеме путем заготовительной штамповки при температуре 410°С, предварительной штамповки при температуре 410°С и после травления путем окончательной штамповки при температуре 400°С, с последующей закалкой при температуре 500°С в течение 2 часов и старением при температуре 150°С в течение 24 часов.
Выход годного при производстве штамповок из сплава №2, 3, 4 был выше на 10%, чем из сплава №1.
Таким образом, предлагаемый сплав обеспечивает достижение поставленной цели - повышение характеристик пластичности сплава и, как следствие, повышение его технологичности, увеличение выхода годного при производстве полуфабрикатов и изделий из него, обеспечение возможности производства тонких листов, тонкостенных профилей и штамповок при снижении трудоемкости производства и сохранении требуемых прочностных и эксплуатационных характеристик сплава, а также полуфабрикатов и изделий из него, предъявляемых к конструкционным материалам для авиакосмической техники.
название | год | авторы | номер документа |
---|---|---|---|
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЯ ИЗ НЕГО | 2006 |
|
RU2327758C2 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2004 |
|
RU2349665C2 |
Сплав на основе алюминия и изделие из него | 2022 |
|
RU2797459C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 2009 |
|
RU2412270C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ЕГО ТЕРМИЧЕСКОЙ ОБРАБОТКИ | 2005 |
|
RU2296176C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 1999 |
|
RU2163940C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА | 2010 |
|
RU2431692C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2001 |
|
RU2215805C2 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУФАБРИКАТОВ ИЗ ЭТОГО СПЛАВА | 2000 |
|
RU2180930C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 2022 |
|
RU2800435C1 |
Изобретение относится к области металлургии сплавов на основе алюминия, применяемых для изготовления полуфабрикатов и изделий, используемых в качестве конструкционных материалов для авиакосмической техники. Сплав и изделие, выполненное из заготовки из этого сплава, содержат следующие компоненты, мас.%: литий 1,6-1,9; медь 1,3-1,5; магний 0,7-1,1; цирконий 0,04-0,2; бериллий 0,02-0,2; титан 0,01-0,1; никель 0,01-0,15; марганец 0,01-0,2; галлий до 0,001; цинк 0,01-0,3; натрий - до 0,0005; кальций 0,005-0,02; и по крайней мере один элемент, выбранный из группы, включающей ванадий 0,005-0,01 и скандий 0,005-0,01; алюминий - остальное. Данный сплав и изделия, выполненные из него, обладают повышенной пластичностью, что позволяет повысить их технологичность, увеличить выход годного при изготовлении полуфабрикатов и изделий, обеспечить возможность производства тонких листов, тонкостенных профилей и штамповок при снижении трудоемкости производства. 2 н.п. ф-лы, 2 табл.
по крайней мере один элемент, выбранный из группы, включающей:
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА | 2000 |
|
RU2180928C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 1999 |
|
RU2163940C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 1988 |
|
RU1584414C |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
US 5085830 A, 04.02.1992 | |||
US 4832910 A, 23.05.1989. |
Авторы
Даты
2007-11-10—Публикация
2006-03-27—Подача