Изобретение относится к системам автоматического управления газотурбинных двигателей, а именно к способам технической диагностики систем автоматического управления газотурбинных двигателей (САУ ГТД).
Известны способы технической диагностики, которые предусматривают проверку работоспособности и поиск неисправностей системы автоматического управления газотурбинного двигателя с помощью наземных средств контроля, применяемых при техническом обслуживании самолетов. Известные устройства контроля конструктивно реализуют в виде пультов (переносных, малогабаритных блоков), которые обеспечивают формирование различных тестовых сигналов, их подачу на вход в систему автоматического регулирования, и по реакции этой системы на тот или иной задаваемый внешний сигнал также с помощью пульта определяют правильность функционирования системы. В связи с широким применением цифровых систем на современных двигателях наибольшее распространение получил тестовый сигнал в виде двоичного электронного кода, например, для дистанционного задания настроек программы регулирования, ввода аварийных, бортовых сигналов или отказов элементов САУ как непосредственно в ЭВМ САУ, так и для подрегулировки (балансировки) механических элементов (патент РФ №2040699, F02C 9/28, 1991 г., патент США №5168447, G05G 23/00, 1986 г.).
Недостатком известных способов являются существенные материальные затраты, связанные с необходимостью проведения наземных гонок ГТД при поиске и локализации отказа в САУ (выработка ресурса ГТД, топлива). Кроме того, существенным являются затраты времени, связанные с отработкой и анализом регистрируемой на бортовые устройства (самописцы) информации о работе ГТД (от 2 до 3 часов), что в целом оказывает влияние на оперативность подготовки к вылету. Также недостатком способа является применение ручного труда, так как подключение пультов контроля, задание того или иного тестового сигнала требует участие оператора. При неправильном подключении пульта контроля к проверяемой САУ возможен выход из строя последней. Недостатком также является необходимость постоянного наличия пультов контроля на самолете.
Поскольку пульты наземного контроля, как правило, не входят в состав бортовых инструментов, то их применение не всегда возможно, например, в транзитном аэропорту.
Известен также способ проверки работоспособности электронной бортовой системы ГТД, в котором проверка работоспособности электронной бортовой системы ГТД осуществляется с помощью встроенных средств контроля самой системы после подачи стимулирующей команды (тест-контроль). На время действия тест-контроля выполнение основных функций системы на некоторое время прекращается, а на вход контролируемого объекта подается специально сформированное эталонное (зондирующее) воздействие. Наличие неисправностей в системе приводит к отклонениям ее выходной реакции, поэтому, анализируя соответствующие отклонения, можно установить место отказа с точностью до отдельного блока или узла системы. Включение в работу встроенных средств контроля происходит после подачи стимулирующей команды от кнопки/переключателя "контроль", расположенных на борту (в кабине экипажа или техническом отсеке). Для обеспечения безопасности проверок предпочтительно, чтобы они проводились на остановленном двигателе, т.к. на время действия контроля выполнение основных функций системы прекращается. Указанный способ контроля позволяет осуществить диагностику технического состояния электронных блоков бортовой системы за 1...2 минуты при минимальных материальных затратах и без применения дополнительного наземного оборудования ("Автоматический контроль и диагностика системы управления силовыми установками летательных аппаратов", Москва, "Машиностроение", 1989 г., стр.32...36; "Техническая эксплуатация авиационного оборудования", Москва, "Транспорт", 1990 г., стр.249...257).
Недостатком известного способа является то, что применение тестового контроля не позволяет обнаружить отказы и сбои непосредственно в процессе выполнения САУ своих функций, т.к. проверку работоспособности проводят эпизодически, как правило перед запуском ГТД. Также необходим контроль на остановленном двигателе.
Наиболее близким к заявляемому является способ, который заключается в контроле функционирования САУ ГТД, состоящей из основного канала управления в виде электронного устройства, резервного канала управления в виде гидромеханического регулятора и системы встроенного контроля, которая в процессе работы двигателя постоянно контролирует исправность каналов САУ, в т.ч. взаимодействующих датчиков, исполнительных механизмов и линий связи. В конструкции САУ также используют специальное электрогидравлическое переключающее устройство (селектор), которое обеспечивает переключение с основного (электронного) канала управления на резервный (гидромеханический) канал и наоборот. Переключение осуществляется по электрическому сигналу "Отказ основного канала", сформированному системой встроенного контроля, или по команде экипажа. Необходимость применения электрогидравлического селектора обусловлена тем, что настроечные значения регуляторов, законы регулирования основного и дублирующего каналов различны, и каждый из них, управляя своими исполнительными механизмами, будет стремиться установить свое значение параметра регулирования. Результатом одновременной работы основного и резервного каналов на ГТД может явиться неустойчивость процесса регулирования в виде автоколебаний параметров nквд, nв, Тт, вокруг настроечных значений (с частотой от 0,2...0,5 до 3 и более Гц), что недопустимо. В этой связи функциональный контроль селектора электрогидравлического устройства переключения с основного на резервный канал управления является актуальной задачей. Решение этой задачи затруднено тем, что в полете переключения селектора происходит крайне редко (как правило только при отказе основного канала САУ) ("Устройство и эксплуатация силовых установок самолетов ИЛ-96-300, ТУ-204, ИЛ-114", Москва, "Транспорт", 1993 г., стр.111).
Недостатком известного способа, принятого за прототип, является то, что при попадании в САУ вместе с топливом не отфильтрованных посторонних частиц возможен не только отказ прецизионных исполнительных элементов основного канала, в частности контура подачи топлива в камеру сгорания, но и заедание/заклинивание золотника устройства переключения (селектора). Результатом такого сочетания дефектов может стать неуправляемость ГТД, что может привести к самопроизвольному увеличению расхода топлива Gт в камеру сгорания и выходу из строя горячей части ГТД. Поэтому контроля целостности электрических линий исполнительных механизмов, электрогидравлического селектора (на отсутствие обрыва или короткого замыкания) средствами встроенного контроля САУ недостаточно для ее надежного функционирования.
Техническая задача, на решение которой направлено заявляемое изобретение, заключается в повышении надежности работы двухканальной системы автоматического управления за счет функционального контроля селектора переключения каналов в процессе выключения двигателя по окончании полета.
Сущность технического решения заключается в том, что в способе диагностики двухканальной системы автоматического управления газотурбинного двигателя, заключающемся в управлении газотурбинным двигателем основным электронным каналом системы, в контроле исполнительных элементов основного электронного канала, обеспечивающих управление конструкцией газотурбинного двигателя, в отключении основного электронного канала при его отказе или отказе его исполнительных элементов с последующим переключением на резервный гидромеханический канал с помощью селектора переключения каналов, при этом в основном канале управления измеряют, по меньшей мере, частоту вращения компрессора высокого давления nквд, расход топлива Gт в камеру сгорания, согласно изобретению при управлении двигателем основным электронным каналом дополнительно устанавливают заданное значение частоты вращения nзад квд, сравнивают измеренную частоту вращения nквд с заданным значением nзад квд и в случае nквд<nзад квд формируют первый логический сигнал I1, измеряют наличие сигнала "Останов двигателя" и при одновременном наличии I1 и сигнала "Останов двигателя" формируют второй логический сигнал I2, при наличии сигнала I2 задают тестовое воздействие, которое кратковременно обеспечивает последовательную подачу сигнала на включение селектора переключения с основного на резервный канал и подачу сигнала I4 в исполнительный элемент основного канала на увеличение расхода топлива Gт, при этом также устанавливают заданное значение расхода топлива в камеру сгорания Gт зад, сравнивают измеренное значение Gт с заданным значением Gт зад в процессе подачи сигнала I4 и в случае Gт>Gт зад формируют пятый логический сигнал I5, при одновременном наличии сигналов I4, I5 формируют шестой логический сигнал I6 о неисправности селектора переключения каналов системы автоматического управления. Подачу сигнала на включение селектора переключения с основного на резервный канал осуществляют на время, равное 1 секунде, а подачу сигнала I4 осуществляют через 0,5 секунды после подачи сигнала на включение селектора и на время, равное 0,5 секунды.
После окончания полета и выключения двигателя на выбеге роторов ГТД встроенное в САУ средство контроля задает тестовое воздействие, которое кратковременно обеспечивает включение устройства переключения с основного на резервный канал и формирует управляющее воздействие от основного канала на увеличение расхода топлива в камеру сгорания.
В случае, если золотник селектора заклинен, то, несмотря на отключение основного канала от исполнительных механизмов, фактически рабочие полости исполнительных механизмов останутся под управлением от основного канала и при тестовом задании воздействия произойдет увеличение расхода топлива в камеру сгорания, что диагностируется как отказ селектора.
В случае исправной работы золотника и фактического перехода на управление ГТД от резервного канала увеличения расхода топлива не произойдет.
На чертеже представлена структурная схема устройства, реализующая заявляемый способ.
Управление газотурбинным двигателем 1 обеспечивает блок управления 2, который представляет собой САУ. Блок 2 содержит основной канал управления 3, резервный канал управления 4, блок встроенного контроля 5, селектор 6 переключения с основного на резервный канал управления и наоборот, исполнительный механизм 7 контура расхода топлива в камеру сгорания ГТД. Блок встроенного контроля 5 содержит компараторы 8 и 11, логические устройства 9 и 12 типа "И", генератор одиночных сигналов (импульсов) 10. Компаратор 8 выполняет сравнение фактической величины частоты вращения компрессора высокого давления nквд (после выключения ГТД на выбеге роторов) с его заданным значением nзад квд. При nквд<nзад квд на выходе компаратора 9 формируется первый логический сигнал I1. Выход компаратора 8 подается на один из входов логического устройства 9. Логическое устройство 9 типа "И" имеет два входа и один выход, подключенный к генератору 10. При одновременном наличии на входах устройства 9 сигнала останова двигателя и первого логического сигнала I1 на выходе устройства 9 формируется второй логический сигнал I2. Генератор одиночных сигналов 10 имеет один вход и два выхода, при этом первый выход соединен с входом селектора 6, а второй - с входом исполнительного механизма 7 контура расхода топлива в камеру сгорания. При этом второй выход генератора 10 соединен с первым входом логического устройства 12. При поступлении на вход генератора 10 второго логического сигнала I2 генератор кратковременно (˜ на 1 с) подает сигнал I3 на включение селектора 6 и через определенный промежуток времени (˜0,5 с) кратковременно (на ˜0,5 с) подает сигнал I4 на увеличение расхода топлива в исполнительный механизм 7. Сигнал I4 также подается на первый вход логического устройства 12. Компаратор 11 выполняет сравнение фактической величины расхода топлива Gт в камеру сгорания с заданным значением. При Gт>Gт зад на выходе компаратора 11 формируется пятый логический сигнал I5. Логическое устройство 12 типа "И" имеет два входа и один выход. При одновременном наличии на входах устройства 12 четвертого и пятого логических сигналов I4, I5 на выходе устройства 12 формируется шестой логический сигнал I6.
Способ осуществляется следующим образом. После завершения полета самолета экипаж выключает двигатель 1 (прекращает подачу топлива в камеру сгорания) и на вход логического устройства 9 поступает сигнал останова двигателя. При выбеге роторов происходит снижение nквд. При nквд<nзад квд на выходе компаратора 8 формируется первый логический сигнал I1, что также приводит к формированию на выходе логического устройства 9 сигнала I2 и включению генератора 11. Генератор 11 кратковременно (на 1 с) подает сигнал I3 на включение селектора 6 и через определенный промежуток времени (0,5 с) кратковременно (на 0,5 с) подает сигнал I4 на увеличение расхода топлива Gт в исполнительный механизм 7. Сигнал I4 также подается на первый вход логического устройства 12. В случае, если золотник селектора заклинен, при тестовом задании воздействия в исполнительный механизм 7 произойдет увеличение расхода топлива в камеру сгорания, т.е. Gт>Gт зад и на выходе компаратора 11 сформируется сигнал I5. При одновременном наличии на входах логического устройства 12 сигналов I4, I5 на выходе устройства 12 формируется шестой логический сигнал I6, свидетельствующий о неисправном состоянии селектора 6 переключения каналов САУ.
название | год | авторы | номер документа |
---|---|---|---|
Способ управления газотурбинным двигателем электронно-гидромеханической системой | 2022 |
|
RU2795360C1 |
Система автоматического управления авиационного газотурбинного двигателя | 2017 |
|
RU2648479C1 |
Система подачи топлива в камеру сгорания авиационного газотурбинного двигателя | 2017 |
|
RU2636360C1 |
СПОСОБ ДИАГНОСТИКИ И ПАРИРОВАНИЯ ОТКАЗОВ ДАТЧИКОВ РЕГУЛИРУЕМЫХ ПАРАМЕТРОВ ДВУХКАНАЛЬНОЙ ЭЛЕКТРОННОЙ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2023 |
|
RU2817573C1 |
СПОСОБ КОНТРОЛЯ СИСТЕМЫ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ | 2010 |
|
RU2468229C2 |
СПОСОБ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ | 2007 |
|
RU2345234C2 |
СПОСОБ КОНТРОЛЯ ЭЛЕКТРОННО-ГИДРОМЕХАНИЧЕСКОЙ СИСТЕМЫ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ | 2009 |
|
RU2432476C2 |
СПОСОБ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ | 2008 |
|
RU2387855C2 |
ЦИФРОВАЯ ЭЛЕКТРОННАЯ СИСТЕМА УПРАВЛЕНИЯ С ВСТРОЕННОЙ ПОЛНОЙ ТЕРМОГАЗОДИНАМИЧЕСКОЙ МАТЕМАТИЧЕСКОЙ МОДЕЛЬЮ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И АВИАЦИОННЫЙ ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 2013 |
|
RU2554544C2 |
СИСТЕМА АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ ПАРАМЕТРОВ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2002 |
|
RU2221929C1 |
Изобретение относится к системам автоматического регулирования газотурбинных двигателей и позволяет повысить надежность работы двухканальной системы автоматического управления за счет функционального контроля селектора переключения каналов в процессе выключения двигателя по окончании полета. Способ диагностики заключается в управлении газотурбинным двигателем основным электронным каналом системы, в контроле исполнительных элементов основного электронного канала, обеспечивающих управление конструкцией газотурбинного двигателя, в отключении основного электронного канала при его отказе или отказе его исполнительных элементов с последующим переключением на резервный гидромеханический канал с помощью селектора переключения каналов, при этом в основном канале управления измеряют, по меньшей мере, частоту вращения компрессора высокого давления nквд, расход топлива Gт в камеру сгорания. Согласно изобретению при управлении двигателем основным электронным каналом дополнительно устанавливают заданное значение частоты вращения nзад квд сравнивают измеренную частоту вращения nквд с заданным значением nзад квд и в случае nквд<nзад квд формируют первый логический сигнал I1, измеряют наличие сигнала "Останов двигателя" и при одновременном наличии I1 и сигнала "Останов двигателя" формируют второй логический сигнал I2, при наличии сигнала I2 задают тестовое воздействие, которое кратковременно обеспечивает последовательную подачу сигнала на включение селектора переключения с основного на резервный канал и подачу сигнала I4 в исполнительный элемент основного канала на увеличение расхода топлива Gт, при этом также устанавливают заданное значение расхода топлива в камеру сгорания Gт зад, сравнивают измеренное значение Gт с заданным значением Gт зад в процессе подачи сигнала I4 и в случае Gт>Gт зад формируют пятый логический сигнал I5, при одновременном наличии сигналов I4, I5 формируют шестой логический сигнал I6 о неисправности селектора переключения каналов системы автоматического управления. Подачу сигнала на включение селектора переключения с основного на резервный канал осуществляют на время, равное 1 секунде, а подачу сигнала I4 осуществляют через 0,5 секунды после подачи сигнала на включение селектора и на время, равное 0,5 секунды. 1 з.п. ф-лы, 1 ил.
Приспособление в пере для письма с целью увеличения на нем запаса чернил и уменьшения скорости их высыхания | 1917 |
|
SU96A1 |
СПОСОБ РЕГУЛИРОВАНИЯ ХАРАКТЕРИСТИК И ДИАГНОСТИКИ СОСТОЯНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1991 |
|
RU2040699C1 |
US 5168447 A, 01.12.1992 | |||
СТЕНД КОНТРОЛЯ И ДИАГНОСТИКИ ЭЛЕКТРОННОЙ СИСТЕМЫ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ | 1989 |
|
SU1777490A1 |
УСТРОЙСТВО ДИАГНОСТИРОВАНИЯ СОСТОЯНИЯ ОБЪЕКТА, ИМЕЮЩЕГО ЭЛЕКТРОННУЮ СИСТЕМУ МОНИТОРИНГА ФУНКЦИОНАЛЬНЫХ ПАРАМЕТРОВ | 1994 |
|
RU2050016C1 |
Устройство для телефонной связи между распорядительным и исполнительным постами | 1933 |
|
SU39208A1 |
US 6568166 A, 27.06.2002. |
Авторы
Даты
2007-12-27—Публикация
2006-04-05—Подача