КАТАЛИЗАТОР НА ОСНОВЕ МОСТИКОВОГО БИС(ФЕНОКСИ-ИМИННОГО) КОМПЛЕКСА, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И ПРОЦЕСС ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА С ЕГО ИСПОЛЬЗОВАНИЕМ Российский патент 2008 года по МПК B01J37/04 C08F4/659 C07C251/16 C07F11/00 C08F10/02 

Описание патента на изобретение RU2315659C1

Изобретение относится к области химической промышленности, в частности к созданию более стойких к полярным средам, высокоактивных гомогенных катализаторов, позволяющих получать линейные, высококристаллические высоко- и сверхвысокомолекулярные ПЭ.

Известны катализаторы полимеризации этилена на основе бис(фенокси-иминных) комплексов с диарильными мостиками общей формулы:

где М=Zr, Hf.

[1. Woodman P.R., Minslow J.J., Hitchcock P.В., Scott P. Non-planar co-ordination of C2-symmetric biaryl-bridged Schiff-base ligands: well expressed chiral ligand environments for zirconium. H. Chem. Soc. Dalton Trans., 1999, 4069-4076], где описан только синтез катализаторов.

В патенте [2. Fujimoto, Makino Т., Tokimitsu. JP 308843, C07C 251/16, C07F 11/00, C08A 4/69, 2002] показано, что мостиковый комплекс хрома с бис(фенокси-иминным) лигандом строения

с активатором AlEt2Cl при полимеризации этилена имеет очень низкую активность (68 гПЭ/ммолькат.·ч).

Наиболее близкой по технической сущности к настоящему изобретению является работа [3. Ishii S.-I., Mitani M., Saito J., Matsuura S., Furuyama R., Fujita T. Ethylene Polymerization Behavior of Polymethylene-Bridged Bis(Phenoxy-Imine)Zr Complexes. Stud. Surf. Sci. Catal. 2002, V.145, P.49-54] по исследованию серии катализаторов на основе хлорида циркония, содержащих полиметиленовые мостики и имеющих общую формулу:

где R - 1-адамантил, n=2...6 или R=кумил, n=4, 6.

При полимеризации этилена на таких комплексах в присутствии МАО активность каталитических систем возрастает с увеличением количества метиленовых звеньев в мостике до n=4 и 6. Исследователями показано, что в случае, когда R=1-адамантил, а n=6 с увеличением температуры полимеризации от 25 до 50 и 75°С активность возрастает (время полимеризации - 5 мин), соответственно от 2640 до 9580 и 10780 кгПЭ/молькат.·ч, при этом ММ полиэтилена изменяется от 45000 до 39000 и 23000. В случае, когда R=кумил и n=6, в аналогичных условиях активность меняется от 9060 до 58380 и 103800 кгПЭ/молькат.·ч, a MM - от 38000 до 15000 и 9000. На наш взгляд, присутствие в структуре комплекса мостиковой связи сказывается на сверхвысокой активности катализатора. Известно, что активность практически всех комплексов Zr резко снижается с течением времени полимеризации, поэтому ни в одной из зарубежных публикаций не приводится кинетических кривых процесса (например, полимеризации этилена). В частности, в рассматриваемой работе время реакции ограничено 5 мин, а активность рассчитывается за час. Основным недостатком таких катализаторов является низкая ММ получаемых полимеров, а при сверхвысокой активности образуются не полимерные продукты, а олигомеры.

Как отмечено в работе [4. R.Furuyama, J.Saito, M.Mitani, H.Makio, H.Yanaka, T.Fuhita. Polyolefin structural control using phenoxy-imine ligated group 4 transition metal complex catalysts. E-Polymers, 2003, No.021, P.1-25] MM полиолефинов, получаемых с использованием комплексов Zr, можно увеличить за счет использования в качестве сокатализаторов Al(i-С4Н9)3/Ph3СВ(С6F5)4 вместо МАО, однако при этом резко (почти на два порядка) снижается активность процесса полимеризации, что приводит к потере всего преимущества в активности мостикового каталитического комплекса.

Таким образом, бис(фенокси-иминные) комплексы циркония с полиметиленовыми мостиками, синтезированные и проверенные в условиях полимеризации этилена, не позволяют получать полимер с ММ, характерными для высокомолекулярных соединений.

Изобретение решает задачу синтеза новых мостиковых бинарных бис(фенокси-иминных) комплексов титана для осуществления высокоэффективной полимеризации этилена с получением высоко- и сверхвысокомолекулярных полиэтиленов.

Задача решается за счет использования бинарных (двойных) бис(фенокси-иминных) комплексов, содержащих присоединенные к иминному азоту фенильные группы, связанные попарно метиленовым (-СН2-) мостиком, и имеющих общую структуру

где R1=кумил, изоборнил; R2=Me, кумил.

В качестве сокатализатора используют метилалюмоксан (МАО).

Полимеризацию проводят при давлениях этилена 0.1-0.8 МПа и температурах 30-80°С. В качестве углеводородных растворителей применяют, например, толуол, н-гексан, бензин и др.

Молекулярную массу (MM) определяют вискозиметрически в растворе декалина при 135°С; в зависимости от величины ММ навеска полимера для определения характеристической вязкости [η] полимера колеблется от 0.007 до 0.001 г. ММ рассчитывают по формуле [5. Chiang R. J.Polym.Sci. 1959. V.36. P.91]:

[η]=6.2·10-4 M0.73

Сущность изобретения иллюстрируется следующими примерами.

Пример 1.

Синтез комплекса бис{дихлорид[4,4'-бис(имино(3,5-дикумил-салицилиден))-дифенилметан]титана (IV)} (А)

1.1. Синтез лиганда

Смесь 0.361 г (1 ммоль) 3,5-дикумилсалицилового альдегида, 15 мл метанола, 0.100 г (0.5 ммоль) 4,4'-диаминодифенилметана кипятят при перемешивании с обратным холодильником 4 ч до исчезновения исходных веществ по ТСХ. Из охлажденной реакционной смеси отфильтровывают осадок оранжевого цвета 0,485 г (98%), т.пл.>250°С. ИК спектр, ν, см-1: 1618 (N=C). Спектр ЯМР 1H, δ, м.д, CCl4: 1.65-1.67 с (24Н, 8СН3), 3.90 с (2Н, СН2), 6.92-7.28 м (32Н, 32Наром), 8.43 с (2Н, 2CH=N), 13.00 с (2Н, 2OН). Найдено, %: С 85.84; Н 6.94; N 3.11. C63H62N2O2. Вычислено, %: С 86.07; Н 7.40; N 3.18.

1.2. Синтез комплекса А.

Смесь 0.221 г (0.25 ммоль) лиганда, 10 мл абсолютного хлористого метилена, 1.84 г (0.25 ммоль) раствора TiCl2(OiPr)2 в абсолютном толуоле (0.153 моль/л) перемешивают под аргоном 5 ч. Растворители отгоняют в вакууме, остаток выдерживают в вакууме масляного насоса при температуре 100°С 1.5 ч и перекристаллизовывают из смеси гексан/СН2Cl2. Получают 0.372 г (75%) темно-фиолетового порошка. Спектр ЯМР 1Н, δ, м.д., CDCl3: 1.15-2.05 с (66Н, 22СН3), 3.60-4.00 м (10Н, 2СН2, 3СН, 30Н), 6.52-8.48 м (68Н, 64Наром., 4·N=CH). Найдено, %: С 74.37; Н 6.44; N 2.25; Cl 6.95. С126Н120Cl4Н4O4Ti2·3С3Н8O. Вычислено, %: С 74.65; Н 6.68; N 2.58; Cl 6.53.

2. Полимеризация этилена

Полимеризацию этилена проводят в стальном автоклаве с мешалкой емкостью 150 мл, в который в токе аргона загружают 44.7 мл толуола, 4.2·10-4 моль МАО в 0.3 мл толуола и 8.4·10-7 моль комплекса А в ампуле, который смывают 5 мл толуола.

Полимеризацию проводят в течение 1 ч при температуре 30°С при давлении этилена 0.3 МПа. Процесс прерывают добавлением в реакционную смесь этилового спирта. Полученную суспензию полимера фильтруют, дважды промывают свежими порциями спирта и сушат при 60°С в вакууме до постоянной массы.

Выход ПЭ 18.65 г, активность 74000 кгПЭ/молькат.·МПа·ч, Мη=2700·103, температура плавления полимера Тпл=142°С, теплота плавления ΔНпл=239.0 Дж/г.

Пример 2.

Синтез комплекса бис{дихлорид[4,4'-бис(имино(3-(1,7,7-триметилбицикло-[2.2.1]гептан-2-ил)-5-метилсалицилиден))дифенилметан]титана(IV)} (Б)

1.1. Синтез лиганда.

Смесь 0.544 г (2 ммоль) 2-гидрокси-5-метил-3-(1,7,7-триметилбицикло-[2.2.1]гептан-2-ил)бензальдегида, 10 мл метанола, 0.198 г (1 ммоль) 4,4'-диаминодифенилметана, 10 мг муравьиной кислоты (99%) кипятят при перемешивании с обратным холодильником 10 ч до исчезновения исходных веществ по ТСХ. Из охлажденной реакционной смеси отфильтровывают светло-желтый осадок 0.652 г (93%.), т.пл. 179-181°С. Спектр ЯМР 1Н, δ, м.д., CCl4: 0.78 с (6Н, 2СН3). 0.84 с (6Н, 2СН3), 0.89 с (6Н, 2СН3), 1.30-2.20 м (14Н, 2СН 6СН2), 2.28 с (6Н, 2СН3), 3.38 т (2Н, 2СН), 3.99 с (2Н, СН2), 6.78 с (2Н, 2Hаром.), 7.21 с (2Н, 2Наром.), 7.45 с (8Н, 8Наром.), 8.57 с (2Н, 2CH=N), 13.37 с (2Н, 2OН). ИК спектр, ν, см-1: 1616 (C=N). Найдено, %: С 83.26; Н 8.24; N 3.90. М+ 678.41449. C49H58N2O2. Вычислено, %: C 83.24; Н 8.27; N 3.96. M+ 678.41850.

7.2. Синтез комплекса Б.

Смесь 0.333 г (0.47 ммоль) лиганда, 5 мл абсолютного хлористого метилена, 3.100 г (0.47 ммоль) раствора TiCl2(OiPr)2 в абсолютном толуоле (0.158 моль/л) перемешивают в атмосфере аргона 6 ч. Хлористый метилен отгоняют в вакууме водоструйного насоса, затем толуол в вакууме масляного насоса при температуре 100°С. Остаток выдерживают в вакууме масляного насоса при температуре 100°С 1.5 ч. Получают 0.295 г (76%) черно-коричневого порошка. Спектр ЯМР 1Н, δ, м.д., CDCl3: 0.74 с (6Н), 0.78-0,85 м (16Н), 1.25-2.50 м (16Н), 3.40-3.65 м (2Н), 3.99 с (2Н, СН2), 6,82-7,45 м (12Н), 8.60 с (2Н). Найдено, %: С 71.42; Н 7.30; Cl 8.84; N 3.32. C98H112Cl4N4O4Ti2. Вычислено, %: С 71.44; Н 6.85; Cl 8.61; N 3.40.

2. Полимеризация этилена

Полимеризацию проводят в условиях примера 1, но МАО загружают в количестве 4.9·10-4 моль (0.33 мл), а катализатор Б - в количестве 0.00162 г (9.8·10-7 моль).

Выход ПЭ 4.65 г, активность 15815 кгПЭ/молькат.·МПа·час, Мη=2200·103, Тпл=142°С, ΔНпл=226.0 Дж/г.

Примеры 3-11.

Аналогичны примеру 1, но в условиях, представленных в таблице. Полученные результаты также отражены в таблице.

Примеры 12-13 (сравнительные).

Для контрольной проверки был синтезирован комплекс дихлорид {1,6-бис[имино(3-(1,7,7-триметилбицикло[2.2.1]гептан-2-ил)-5-метил-салицилиден)]гексан}титана(IV) (В), по структурной формуле практически аналогичный комплексу циркония, но содержащий в фенокси-группе в орто-положении по отношению к кислороду вместо кумила R1=изоборнил, a R2=Me, т.е. по строению фенокси-группы идентичный катализатору Б, а по характеру мостиковой полиметиленовой связки - (СН2)6- - прототипу на основе Zr.

Структура комплекса В приведена ниже:

Сравнительные примеры аналогичны примеру 1, в условиях, представленных в таблице.

Полученные результаты также отражены в таблице.

Синтез комплекса дихлорид {1,6-бис[имино(3-(1,7,7-триметилбицикло[2.2.1]-гептан-2-ил)-5-метилсалицилиден)]гексан}титана(1У) (В)

1.1.Синтез лиганда

Смесь 0.544 г (2 ммоль) 2-гидрокси-5-метил-3-(1,7,7-триметилбицикло[2.2.1]-гептан-2-ил)бензальдегида, 10 мл метанола, 0.116 г (1 ммоль) 1,6-гексаметилен-диамина, 10 мг муравьиной кислоты (99%) кипятят при перемешивании с обратным холодильником 6 ч до исчезновения исходных веществ по ТСХ. Из охлажденной реакционной смеси отфильтровывают светло-желтый осадок 0.563 г (92%), т.пл. >250°С. Спектр ЯМР 1Н, δ, м.д, CCl4: 0.77 с (6Н, 2СН3), 0.82 с (6Н, 2СН3), 0.87 с (6Н, 2СН3), 1.35-2.11 м (22Н, 2СН, 10СН2), 2.25 с (6Н, 2СН3), 3.30 т (2Н, 2СН), 3.55 м (4Н, 2CH2·N), 6.71 с (2Н, 2Наром), 7.03 с (2Н, 2Наром), 8.21 с (2Н, 2CH=N), 13.14 с (2Н, 2OН). ИК спектр, ν, см-1: 1634 (C=N). Найдено, %: С 80.78; Н 9.64; N 4.41. М+ 624.46614. C42H60N2O2. Вычислено, %: С 80.72; Н 9.68; N 4.48. М+ 624.46548.

1.2. Синтез комплекса В

Смесь 0.156 г (0.25 ммоль) лиганда, 5 мл абсолютного хлористого метилена, 1.650 г (0.25 ммоль) раствора TiCl2(OiPr)2 в абсолютном толуоле (0.158 моль/л) перемешивают в атмосфере аргона 5 ч. Хлористый метилен отгоняют в вакууме водоструйного насоса, затем толуол в вакууме масляного насоса при температуре 100°С. Остаток выдерживают в вакууме масляного насоса при температуре 100°С 1.5 часа. Получают 0.168 г (78%) черно-красного порошка. Спектр ЯМР 1Н, δ, м.д., CDCl3: 0.74 с (18Н), 0.78-1.82 м (26Н), 2.33 с (6Н), 3.40-3.65 м (2Н), 7.16 с (2Н), 7.24 с (2Н), 8.03 с (2Н). Найдено, %: С 68.02; Н 7.98; Cl 9.70; N 3.50. Мол. вес: 730; 746. C42H58Cl2N2O2Ti. Вычислено, %: С 68.01; Н 7.88; Cl 9.56; N 3.78. Мол. вес: 741.70.

Таким образом, как показано в примерах 1-11, новые бинарные мостиковые бис(фенокси-иминные) комплексы TiCl2, содержащие у иминного азота фенильные группы с метиленовой связкой, при полимеризации этилена позволяют получать с высокой активностью высоко- и сверхвысокомолекулярный линейный полиэтилен с повышенными температурными характеристиками.

Сравнительные примеры 12-13 показывают, что бис(фенокси-иминный) комплекс титана, содержащий полиметиленовый мостик (СН2)n (n=6), при отсутствии у иминного азота фенильной группы имеет низкую активность (приблизительно в 10-60 раз) по сравнению с предлагаемыми новыми мостиковыми бинарными бис(фенокси-иминными) комплексами на основе титана.

Технический результат - синтез новых высокоактивных гомогенных катализаторов, позволяющих получать линейный ПЭ с высокой и сверхвысокой ММ и повышенной температурой плавления (не менее 141-143°С).

Таблица№ примера КомплексКол-во комплекса, мкмольMAO:Ti, моль:мольРэ, МПаTпол., °Сτопыта, минВыход ПЭ, гАктивность, Mη ·10-3Tпл., °СΔНпл., Дж/г3А0.765000.33052.641389501050141.72534А0.725000.330156.351175901300142.02385А0.895000.5506019.20431503250141.22396*А1.062500.8706020.93246902820142.02307Б0.985000.130601.42144902565142.02258Б1.010000.330603.90130001865143.02339Б1.865000.350607.60136201540143.023210Б1.795000.370607.0513130850144.024611*Б1.735000.380605.5010600345142.024712 контр.В3.562500.330601.351264140.022613 контр.В3.842500.350601.641424530141.0211* Пример 6 - в среде н-гексана, пример 11 - в среде бензина

Похожие патенты RU2315659C1

название год авторы номер документа
КАТАЛИЗАТОР НА ОСНОВЕ МОСТИКОВОГО БИС(ФЕНОКСИИМИННОГО) КОМПЛЕКСА, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И ПРОЦЕСС ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА С ЕГО ИСПОЛЬЗОВАНИЕМ 2008
  • Иванчев Сергей Степанович
  • Толстиков Генрих Александрович
  • Олейник Иван Иванович
  • Иванчева Неонила Ивановна
  • Кострова Алена Юрьевна
  • Олейник Ирина Владимировна
  • Бадаев Владимир Константинович
  • Свиридова Елена Викторовна
RU2364607C1
СПОСОБ ПОЛУЧЕНИЯ РЕАКТОРНЫХ ПОРОШКОВ СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИЭТИЛЕНА ПОЛИМЕРИЗАЦИЕЙ ЭТИЛЕНА 2014
  • Иванчев Сергей Степанович
  • Озерин Александр Никифорович
  • Иванчева Неонила Ивановна
  • Бакеев Николай Филлипович
  • Руппель Екатерина Игоревна
  • Аулов Виктор Антонович
  • Еремеева Марина Геннадиевна
  • Кечекьян Александр Степанович
  • Олейник Иван Иванович
  • Голубев Евгений Константинович
  • Федоров Сергей Петрович
  • Адонин Николай Юрьевич
  • Мартьянов Анатолий Михайлович
  • Майер Эдуард Александрович
RU2561921C1
КАТАЛИТИЧЕСКАЯ СИСТЕМА И СПОСОБ ПОЛУЧЕНИЯ РЕАКТОРНОГО ПОРОШКА СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИЭТИЛЕНА ДЛЯ СВЕРХВЫСОКОПРОЧНЫХ СВЕРХВЫСОКОМОДУЛЬНЫХ ИЗДЕЛИЙ МЕТОДОМ ХОЛОДНОГО ФОРМОВАНИЯ 2010
  • Иванчева Неонила Ивановна
  • Чвалун Сергей Николаевич
  • Иванчев Сергей Степанович
  • Озерин Александр Никифорович
  • Бакеев Николай Филлипович
  • Еремеева Марина Геннадиевна
  • Николаев Денис Александрович
  • Пахомов Николай Александрович
  • Олейник Ирина Владимировна
  • Толстиков Генрих Александрович
RU2459835C2
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИТИЧЕСКОЙ СИСТЕМЫ ДЛЯ ПОЛУЧЕНИЯ РЕАКТОРНОГО ПОРОШКА СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИЭТИЛЕНА 2016
  • Олейник Иван Иванович
  • Олейник Ирина Владимировна
  • Шундрина Инна Казимировна
RU2645357C1
КАТАЛИТИЧЕСКАЯ СИСТЕМА И СПОСОБ ПОЛУЧЕНИЯ РЕАКТОРНОГО ПОРОШКА СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИЭТИЛЕНА 2013
  • Иванчев Сергей Степанович
  • Озерин Александр Никифорович
  • Иванчева Неонила Ивановна
  • Чвалун Сергей Николаевич
  • Олейник Иван Иванович
  • Бакеев Николай Филлипович
  • Еремеева Марина Геннадиевна
  • Свиридова Елена Викторовна
  • Аулов Виктор Антонович
  • Олейник Ирина Владимировна
  • Кечекьян Александр Степанович
RU2552636C2
Способ получения реакторного порошка сверхвысокомолекулярного полиэтилена 2015
  • Иванчев Сергей Степанович
  • Еремеева Марина Геннадиевна
  • Руппель Екатерина Игоревна
  • Тюльманков Валерий Петрович
  • Озерин Александр Никифорович
  • Кечекьян Александр Степанович
RU2624215C2
Каталитическая система, способ ее приготовления и способ получения реакторного порошка сверхвысокомолекулярного полиэтилена 2021
  • Адонин Николай Юрьевич
  • Шабалин Антон Юрьевич
  • Фурсов Евгений Александрович
  • Приходько Сергей Александрович
  • Бухтияров Валерий Иванович
RU2753875C1
Компонент катализатора для полимеризации этилена в сверхвысокомолекулярный полиэтилен, катализатор и способ его приготовления 2018
  • Олейник Иван Иванович
  • Олейник Ирина Владимировна
  • Шундрина Инна Казимировна
RU2676484C1
ТИТАНСОДЕРЖАЩИЙ КОМПОНЕНТ КАТАЛИЗАТОРА ДЛЯ ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА В НЕСПУТАННЫЙ СВЕРХВЫСОКОМОЛЕКУЛЯРНЫЙ ПОЛИЭТИЛЕН, КАТАЛИЗАТОР И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2023
  • Олейник Иван Иванович
  • Олейник Ирина Владимировна
  • Шундрина Инна Казимировна
  • Шундрина Инна Казимировна
RU2807896C1
КАТАЛИЗАТОР ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА НА ОСНОВЕ БИС(ИМИНО)ПИРИДИЛЬНЫХ КОМПЛЕКСОВ 2001
  • Иванчев С.С.
  • Толстиков Г.А.
  • Габутдинов М.С.
  • Кудряшов В.Н.
  • Олейник И.И.
  • Иванчева Н.И.
  • Бадаев В.К.
  • Олейник И.В.
RU2194056C1

Реферат патента 2008 года КАТАЛИЗАТОР НА ОСНОВЕ МОСТИКОВОГО БИС(ФЕНОКСИ-ИМИННОГО) КОМПЛЕКСА, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И ПРОЦЕСС ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА С ЕГО ИСПОЛЬЗОВАНИЕМ

Изобретение относится к области химической промышленности, в частности к созданию более стойких к полярным средам, высокоактивных гомогенных катализаторов, позволяющих получать линейные, высококристаллические высоко- и сверхвысокомолекулярные ПЭ. Описан катализатор, представляющий собой бинарный мостиковый бис(фенокси-иминный) комплекс титана общей формулы:

где R1=кумил, изоборнил; R=Me, кумил; способ приготовления катализатора, заключающийся во взаимодействии дииминного лиганда с соединением переходного металла, в качестве компонентов для приготовления дииминного лиганда используют 4,4'-диамонодифенилметан и метил- или кумилпроизводные 3-кумил- или 3-изоборнилсалицилового альдегида, а в качестве соединения переходного металла используют диизопропоксидихлород титана - TiCl2(OiPr)2; и процесс полимеризации этилена, осуществляемый в среде углеводородного растворителя, в присутствии описанного выше катализатора при давлении этилена 0.1-0.8 МПа и температуре 30-80°С, в качестве сокатализатора используют, например, метилалюмоксан. Технический результат - высокоактивные гомогенные катализаторы позволяют получать линейный ПЭ с высокой и сверхвысокой ММ и повышенной температурой плавления (не менее 141-143°С). 3 н. и 1 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 315 659 C1

1. Катализатор для процесса полимеризации этилена на основе мостикового бис(фенокси-иминного) комплекса переходного металла, отличающийся тем, что он представляет собой бинарный мостиковый бис(фенокси-иминный) комплекс титана общей формулы

где R1=кумил, изоборнил; R2=Ме, кумил.

2. Способ приготовления катализатора для процесса полимеризации этилена на основе мостикового бис(фенокси-иминного) комплекса переходного металла по п.1 взаимодействием дииминного лиганда с соединением переходного металла, отличающийся тем, что в качестве компонентов для приготовления дииминного лиганда используют 4,4'-диамонодифенилметан и метил- или кумилпроизводные 3-кумил- или 3-изоборнилсалицилового альдегида, а в качестве соединения переходного металла используют диизопропоксидихлород титана TiCl2(OiPr)2.3. Процесс полимеризации этилена в среде углеводородного растворителя в присутствии катализатора на основе мостикового бис(фенокси-иминного) комплекса переходного металла, отличающийся тем, что используют катализатор по п.1 или катализатор, приготовленный по п.2 в сочетании с сокатализатором.4. Процесс по п.3, отличающийся тем, что полимеризацию проводят при давлении этилена 0,1-0,8 МПа и температуре 30-80°С, в качестве углеводородного растворителя применяют, например, толуол, н-гексан, бензин, а в качестве сокатализатора используют, например, метилалюмоксан.

Документы, цитированные в отчете о поиске Патент 2008 года RU2315659C1

Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Ishii S.-I., Mitani M., Saito J., Matsuura S., Furuyama R., Fujita T
Ethylene Polymerization Behavior of Polymethylene-Bridged Bis(Phenoxy-Imine)Zr Complexes
Stud
Surf
Sci
Catal
Топчак-трактор для канатной вспашки 1923
  • Берман С.Л.
SU2002A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Woodman P.R., Minslow J.J., Hitchcock P.B., Scott P
Non-planar co-ordination of Cz-symmetric biaryl-bridged Schiff-base ligands: well

RU 2 315 659 C1

Авторы

Иванчев Сергей Степанович

Толстиков Генрих Александрович

Олейник Иван Иванович

Иванчева Неонила Ивановна

Олейник Ирина Владимировна

Свиридова Елена Викторовна

Малинская Марина Юрьевна

Кочнев Андрей Иванович

Романов Василий Евгеньевич

Даты

2008-01-27Публикация

2006-11-15Подача