СПОСОБ ПОЛУЧЕНИЯ ХЛОРА Российский патент 2008 года по МПК C01B7/04 

Описание патента на изобретение RU2320534C1

Заявляемое изобретение касается способа получения хлора в процессе газофазного окисления хлорида водорода.

Изобретение найдет применение, в частности, при утилизации абгазного хлорида водорода, образующегося в процессах хлорорганического синтеза.

В настоящее время в промышленности применяются в основном два способа получения хлора из хлористого водорода - электролиз водного раствора хлористого водорода и различные варианты его каталитического окисления. При осуществлении способа, основанного на электролизе водного раствора хлористого водорода, требуется крупногабаритное, сложное оборудование и большие затраты электроэнергии. Все известные каталитические способы реализуются при высоких температурах (порядка 450-500 град.С) и, соответственно, требуют больших затрат тепловой и электрической энергии, дорогостоящих катализаторов, сложного, работающего в тяжелых условиях оборудования.

Известен способ получения хлора при отсутствии катализатора в процессе газофазного окисления хлорида водорода кислородом воздуха путем непрерывной подачи газообразной смеси, содержащей хлорид водорода и кислород, в проточную реакционную зону. Процесс окисления хлорида водорода кислородом с образованием целевого продукта ведут в зоне электроимпульсных разрядов, создаваемых при напряжении 10-40 кВ (RU, 1801943 А1, опубл. 15.03.1993, МПК: С01В 7/04). Указанный способ позволяет осуществлять процесс окисления при отсутствии катализатора. Однако в условиях указанного способа генерирование активных частиц и химические превращения происходят под действием крайне краткосрочного электрического разряда, что обуславливает, в частности, достигаемую недостаточно высокую конверсию хлористого водорода, которая составляет 25%, а в самом лучшем случае составляет 74%, что делает названный способ практически непригодным для промышленного использования.

В основу заявляемого изобретения положена задача путем создания условий для стабильного и непрерывного процесса окисления хлорида водорода создать такой способ получения хлора, который позволил бы повысить степень конверсии хлорида водорода при высокой технологической стабильности осуществимости способа.

Эта задача решается при создании способа получения хлора путем непрерывной подачи газообразной смеси, содержащей хлорид водорода и кислород, в проточную реакционную зону и окисления хлорида водорода кислородом с образованием целевого продукта, в котором, согласно изобретению, в проточную реакционную зону газообразную смесь подают при давлении от 1,1 до 5,0 бар и переводят газообразную смесь в состояние низкотемпературной плазмы путем воздействия импульсным электрическим разрядом и осуществляют в среде образованной низкотемпературной плазмы окисление хлорида водорода кислородом, после чего газообразную смесь, содержащую продукт окисления, выводят из реакционной зоны, подвергают конденсации и выделяют целевой продукт из сконденсированной воды.

Благодаря изобретению стало возможно в технологически стабильном процессе, пригодном для промышленного применения, достигнуть почти 100% конверсии хлорида водорода.

Согласно изобретению, целесообразно в качестве импульсного электрического разряда использовать наносекундный стримерный разряд, образуемый при ускоряющем напряжении не менее 150 кВ, энергии в импульсе не менее 1,25 Дж, частоте следования импульсов не более 10 кГц, длительности импульса не менее 100 наносекунд, разрядном токе не менее 80 А, или использовать вспышечный коронный разряд, образуемый при ускоряющем напряжении от 10 до 150 кВ, энергии в импульсе не менее 1,25 Дж, частоте следования импульсов не более 10 кГц, длительности импульса не менее 100 наносекунд, разрядном токе не менее 10 мА, или качестве импульсного электрического разряда использовать разряд, образующий несфокусированный пучок электронов при ускоряющем напряжении 150 кВ, энергии в импульсе 1,75 Дж, частоте следования импульсов не более 25 кГц.

Дальнейшие цели и преимущества заявляемого изобретения станут ясны из последующего подробного описания способа получения хлора и конкретных примеров осуществления этого способа.

Способ получения хлора, заявляемый в настоящем изобретении, основан на использовании газообразного хлорида водорода в качестве хлорсодержащего сырья для регенерации хлора.

Заявляемый способ получения хлора заключается в том, что газообразную смесь, содержащую хлорид водорода и кислород, непрерывно подают при давлении от 1,1 до 5,0 бар в проточную реакционную зону.

В реакционной зоне газообразную смесь частично или полностью превращают в ионизованный газ, то есть переводят ее в состояние низкотемпературной плазмы путем воздействия импульсным электрическим разрядом, например секундным стримерным разрядом, разрядом, образующим несфокусированный пучок электронов, вспышечным коронным разрядом, поверхностно-барьерным разрядом, тлеющим разрядом атмосферного давления.

Для реализации импульсного электрического разряда выполняют электрическое ускоряющее напряжение от 10 до 200 кВ, энергию в импульсе не менее 1,25 Дж, частоту следования импульсов не более 100 кГц, длительность импульса не менее 100 наносекунд, разрядный ток не менее 10 мА.

Более конкретно для того, чтобы перевести газообразную смесь в состояние низкотемпературной плазмы, согласно изобретению, целесообразно использовать наносекундный стримерный разряд, образуемый при ускоряющем напряжении не менее 150 кВ, энергии в импульсе не менее 1,25 Дж, частоте следования импульсов не более 10 кГц, длительности импульса не менее 100 наносекунд, разрядном токе не менее 80 А. Или целесообразно использовать вспышечный коронный разряд, образуемый при ускоряющем напряжении от 10 до 150 кВ, энергии в импульсе не менее 1,25 Дж, частоте следования импульсов не более 10 кГц, длительности импульса не менее 100 наносекунд, разрядном токе не менее 10 мА.

Возможно также использование разряда, образующего несфокусированный пучок электронов при ускоряющем напряжении 150 кВ, энергии в импульсе 1,75 Дж, частоте следования импульсов не более 25 кГц.

Также целесообразно использовать поверхностно-барьерный разряд, образуемый при ускоряющем напряжении не менее 150 кВ, энергии в импульсе не менее 1,25 Дж, частоте следования импульсов не более 10 кГц, длительности импульса не менее 100 наносекунд, разрядном токе не менее 80 А. Или целесообразно использовать тлеющий разряд атмосферного давления, образуемый при ускоряющем напряжении от 10 до 50 кВ, энергии в импульсе не менее 1,25 Дж, частоте следования импульсов не более 10 кГц, длительности импульса не более 10 микросекунд, разрядном токе не менее 10 мА.

В среде образованной низкотемпературной плазмы осуществляют окисление хлорида водорода кислородом.

Таким образом образование целевого продукта происходит, в соответствии с заявляемым способом, из газообразной смеси, находящейся в состоянии низкотемпературной плазмы.

Газообразную смесь, содержащую продукт окисления, непрерывно выводят из реакционной зоны, подвергают конденсации и выделяют целевой продукт из сконденсированной воды.

В соответствии с заявляемым способом, достижение технологически стабильного процесса, пригодного для промышленного применения и достижение почти 100% конверсии хлорида водорода стало возможно при организации процесса получения хлора, в основном, по радикально-цепному разветвленному механизму реакций. Для реализации такого механизма реакций создают и поддерживают в течение всего процесса окисления газообразного хлорида водорода кислородом высокой концентрации активных центров, а именно свободных радикалов, ионов, возбужденных молекул и атомов.

В среде низкотемпературной плазмы, образованной в заявляемых режимах, согласно заявляемому способу, создают следующие факторы воздействия на газообразный хлорид водорода: свободные электроны, ионы, возбужденные нейтральные молекулы и электромагнитное излучение в широком диапазоне.

Под действием заявляемых импульсных электрических разрядов в газовой среде генерируются химически активные частицы - свободные радикалы, ионы, возбужденные молекулы. Результатом такого воздействия также является возбуждение колебательных, вращательных и электронных уровней молекул и атомов среды.

Процессы диссоциации, рекомбинации и перераспределения энергии в результате различных типов взаимодействия (столкновения, поглощения излучения, переизлучения) в конечном итоге приводят к распаду молекул хлористого водорода и кислорода, образованию высокой концентрации активных центров и к образованию хлора и воды.

Для реализации названных импульсных электрических разрядов возможно использовать широко известное оборудование. Так, например, возможно применение плазмохимического реактора, генератора высоковольтных импульсов наносекундной длительности, а для вывода в газовую среду несфокусированного пучка электронов возможно применение частотного ускорителя электронов.

Благодаря заявляемому способу достигается высокопроцентная конверсия смеси в хлор и пары воды. Для подавления гидролиза образовавшегося хлора парогазовую смесь подвергают охлаждению в конденсаторе до 2-3 град.С. При этом отделяют основную массу воды.

Таким образом заявляемый способ осуществим при отсутствии катализаторов, не требует использования высоких температур - осуществим при температуре окружающей среды, обладает высокой надежностью и стабильно хорошими технологическими показателями.

Для лучшего понимания данного изобретения приводятся следующие примеры его конкретного выполнения.

Пример 1

Хлористый водород в количестве 5,15 кг/час и кислород в количестве 1,13 кг/час направляют в камеру предварительного смешения при температуре 20 град.С, после чего непрерывно подают при давлении от 1,2 бар в реакционную зону плазмохимического реактора.

В реакционной зоне в среде указанной газообразной смеси при ускоряющем напряжении 200 кВ, энергии в импульсе 1,75 Дж, частоте следования импульсов 25 кГц формируют несфокусированный пучок электронов от частотного ускорителя электронов, собранного по схеме тиратрон-импульсный трансформатор-полупроводниковый прерыватель тока.

При давлении 1,2 бар под воздействием несфокусированного пучка электронов газообразная смесь полностью превращается в ионизованный газ и приобретает состояние низкотемпературной плазмы. В среде низкотемпературной плазмы осуществляют окисление хлорида водорода кислородом, после чего газообразную смесь, содержащую продукт окисления, выводят из реакционной зоны, подвергают конденсации в конденсаторе-фазоразделителе и выделяют целевой продукт из сконденсированной воды.

Состав продуктов реакции: хлор - 5,0 кг/час, вода - 1,27 кг/час.

Пример 2

Хлористый водород в количестве 10,3 кг/час и кислород в количестве 2,26 кг/час направляют в камеру предварительного смешения при температуре 20 град.С, после чего подают в зону стриммерного разряда, создаваемого в генераторе высоковольтных импульсов наносекундной длительности - рабочее напряжение генератора не менее 150 кВ, длительность импульса не менее 100 наносекунд, преимущественно 500 наносекунд. Под воздействием указанного стриммерного разряда газообразная смесь частично или полностью превращается в ионизованный газ и приобретает состояние низкотемпературной плазмы. В среде низкотемпературной плазмы осуществляют окисление хлорида водорода кислородом, после чего газообразную смесь, содержащую продукт окисления, выводят из реакционной зоны, подвергают конденсации в конденсаторе-фазоразделителе и выделяют целевой продукт из сконденсированной воды.

Состав продуктов реакции: хлор - 10,0 кг/час, вода - 2,54 кг/час.

Пример 3

Хлористый водород в количестве 5,15 кг/час и кислород в количестве 1,13 кг/час подают в камеру предварительного смешения при температуре 20 град.С. Образованную реакционную газообразную смесь затем непрерывно при давлении 1,2 бар направляют через кольцевой коллектор в реакционную зону плазмохимического реактора в зону стриммерных разрядов, создаваемых генератором высоковольтных импульсов при разрядном токе 80 А, напряжении 150 кВ, энергии в импульсе 1,75 Дж, частоте следования импульсов до 10 кГц.

В проточной реакционной зоне при давлении 1,2 бар газообразную смесь частично или полностью превращают в ионизованный газ, то есть газообразную смесь переводят в состояние низкотемпературной плазмы. Под воздействием указанных стриммерных разрядов газообразная смесь частично или полностью превращается в ионизованный газ и приобретает состояние низкотемпературной плазмы. В среде низкотемпературной плазмы осуществляют окисление хлорида водорода кислородом, после чего газообразную смесь, содержащую продукт окисления, выводят из реакционной зоны, подвергают конденсации в конденсаторе-фазоразделителе и выделяют целевой продукт из сконденсированной воды.

Состав продуктов реакции: хлор - 5,0 кг/час, вода - 1,27 кг/час.

Пример 4

Хлористый водород в количестве 52,425 кг/час и кислород в количестве 11,475 кг/час подают в камеру предварительного смешения при температуре 20 град.С.Образованную реакционную газообразную смесь затем при давлении 1,6 бар непрерывно направляют через кольцевой коллектор в реакционную зону плазмохимического реактора в зону вспышечных коронных разрядов, создаваемых генератором высоковольтных импульсов при разрядном токе 10 мА, напряжении 100 кВ, частоте следования импульсов до 10 кГц, длительности импульса не более 10 микросекунд.

В проточной реакционной зоне при давлении 1,6 бар газообразную смесь частично или полностью превращают в ионизованный газ, то есть газообразную смесь переводят в состояние низкотемпературной плазмы.

Под воздействием указанных вспышечных коронных разрядов газообразная смесь частично или полностью превращается в ионизованный газ и приобретает состояние низкотемпературной плазмы. В среде низкотемпературной плазмы осуществляют окисление хлорида водорода кислородом, после чего газообразную смесь, содержащую продукт окисления, выводят из реакционной зоны, подвергают конденсации в конденсаторе-фазоразделителе и выделяют целевой продукт из сконденсированной воды.

Состав продуктов реакции: хлор - 49,96 кг/час, вода - 12,62 кг/час.

Пример 5

Хлористый водород в количестве 52,425 кг/час и кислород в количестве 11,475 кг/час подают в камеру предварительного смешения при температуре 20 град.С. Образованную реакционную газообразную смесь затем при давлении 4,8 бар непрерывно направляют через кольцевой коллектор в реакционную зону плазмохимического реактора в зону вспышечных коронных разрядов, создаваемых генератором высоковольтных импульсов при разрядном токе 12 мА, напряжении 150 кВ, частоте следования импульсов до 1 кГц.

В проточной реакционной зоне при давлении 4,8 бар газообразную смесь полностью превращают в ионизованный газ, то есть газообразную смесь переводят в состояние низкотемпературной плазмы.

Под воздействием указанных вспышечных коронных разрядов газообразная смесь полностью превращается в ионизованный газ и приобретает состояние низкотемпературной плазмы. В среде низкотемпературной плазмы осуществляют окисление хлорида водорода кислородом, после чего газообразную смесь, содержащую продукт окисления, выводят из реакционной зоны, подвергают конденсации в конденсаторе-фазоразделителе и выделяют целевой продукт из сконденсированной воды. Состав продуктов реакции: хлор - 48,76 кг/час, вода - 11,22 кг/час.

Пример 6

Хлористый водород в количестве 5,15 кг/час и кислород в количестве 1,13 кг/час направляют в камеру предварительного смешения при температуре 20 град.С, после чего непрерывно подают при давлении от 5,0 бар в реакционную зону плазмохимического реактора.

В реакционной зоне в среде указанной газообразной смеси при ускоряющем напряжении 150 кВ, энергии в импульсе 1,97 Дж, частоте следования импульсов 25 кГц формируют несфокусированный пучок электронов от частотного ускорителя электронов, собранного по схеме тиратрон-импульсный трансформатор-полупроводниковый прерыватель тока.

При давлении 5,0 бар под воздействием несфокусированного пучка электронов газообразная смесь частично или полностью превращается в ионизованный газ и приобретает состояние низкотемпературной плазмы. В среде низкотемпературной плазмы осуществляют окисление хлорида водорода кислородом, после чего газообразную смесь, содержащую продукт окисления, выводят из реакционной зоны, подвергают конденсации в конденсаторе-фазоразделителе и выделяют целевой продукт из сконденсированной воды.

Состав продуктов реакции: хлор - 5,0 кг/час, вода - 1,27 кг/час.

Пример 7.

Хлористый водород в количестве 10,3 кг/час и кислород в количестве 2,26 кг/час направляют в камеру предварительного смешения при температуре 20 град.С, после чего подают со скоростью 100 м/с в зону тлеющего разряда, создаваемого генератором высоковольтных импульсов наносекундной длительности - рабочее напряжение генератора не менее 30 кВ, длительность импульса 500 наносекунд.

Под воздействием указанного тлеющего разряда газообразная смесь частично или полностью превращается в ионизованный газ и приобретает состояние низкотемпературной плазмы. В среде низкотемпературной плазмы осуществляют окисление хлорида водорода кислородом, после чего газообразную смесь, содержащую продукт окисления, выводят из реакционной зоны, подвергают конденсации в конденсаторе-фазоразделителе и выделяют целевой продукт из сконденсированной воды.

Состав продуктов реакции: хлор - 10,0 кг/час, вода - 2,54 кг/час.

Пример 8.

Хлористый водород в количестве 5,15 кг/час и кислород в количестве 1,13 кг/час подают в камеру предварительного смешения при температуре 20 град.С. Образованную реакционную газообразную смесь затем непрерывно при давлении 1,2 бар направляют через кольцевой коллектор в реакционную зону плазмохимического реактора в зону поверхностно-барьерного разряда, создаваемых генератором высоковольтных импульсов при разрядном токе 80 А, напряжении 50 кВ, энергии в импульсе 1,75 Дж, частоте следования импульсов до 10 кГц.

В проточной реакционной зоне при давлении 1,2 бар газообразную смесь частично или полностью превращают в ионизованный газ, то есть газообразную смесь переводят в состояние низкотемпературной плазмы. Под воздействием указанного поверхностно-барьерного разряда газообразная смесь частично или полностью превращается в ионизованный газ и приобретает состояние низкотемпературной плазмы. В среде низкотемпературной плазмы осуществляют окисление хлорида водорода кислородом, после чего газообразную смесь, содержащую продукт окисления, выводят из реакционной зоны, подвергают конденсации в конденсаторе-фазоразделителе и выделяют целевой продукт из сконденсированной воды.

Состав продуктов реакции: хлор - 5,0 кг/час, вода - 1,27 кг/час.

Пример 9.

Хлористый водород в количестве 52,425 кг/час и кислород в количестве 11,475 кг/час подают в камеру предварительного смешения при температуре 20 град.С. Образованную реакционную газообразную смесь затем при давлении 1,6 бар непрерывно направляют через кольцевой коллектор в реакционную зону плазмохимического реактора в зону поверхностно-барьерного разряда, создаваемого генератором высоковольтных импульсов при разрядном токе 100 А, напряжении 50 кВ, частоте следования импульсов до 10 кГц, длительности импульса не менее 100 наносекунд.

В проточной реакционной зоне при давлении 1,6 бар газообразную смесь частично или полностью превращают в ионизованный газ, то есть газообразную смесь переводят в состояние низкотемпературной плазмы.

Под воздействием указанного поверхностно-барьерного разряда газообразная смесь частично или полностью превращается в ионизованный газ и приобретает состояние низкотемпературной плазмы. В среде низкотемпературной плазмы осуществляют окисление хлорида водорода кислородом, после чего газообразную смесь, содержащую продукт окисления, выводят из реакционной зоны, подвергают конденсации в конденсаторе-фазоразделителе и выделяют целевой продукт из сконденсированной воды. Состав продуктов реакции: хлор - 49,96 кг/час, вода - 12,62 кг/час.

Пример 10.

Хлористый водород в количестве 52,425 кг/час и кислород в количестве 11,475 кг/час подают в камеру предварительного смешения при температуре 20 град.С. Образованную реакционную газообразную смесь затем при давлении 4,8 бар со скоростью 200 м/с непрерывно направляют в реакционную зону плазмохимического реактора в зону тлеющего разряда атмосферного давления, создаваемого генератором высоковольтных импульсов при разрядном токе 12 мА, напряжении 50 кВ, частоте следования импульсов до 1кГц.

В проточной реакционной зоне при давлении 4,8 бар газообразную смесь полностью превращают в ионизованный газ, то есть газообразную смесь переводят в состояние низкотемпературной плазмы.

Под воздействием указанных вспышечных коронных разрядов газообразная смесь полностью превращается в ионизованный газ и приобретает состояние низкотемпературной плазмы. В среде низкотемпературной плазмы осуществляют окисление хлорида водорода кислородом, после чего газообразную смесь, содержащую продукт окисления, выводят из реакционной зоны, подвергают конденсации в конденсаторе-фазораз делителе и выделяют целевой продукт из сконденсированной воды. Состав продуктов реакции: хлор - 48,76 кг/час, вода - 11,22 кг/час.

Похожие патенты RU2320534C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ РЕДКИХ ТУГОПЛАВКИХ МЕТАЛЛОВ, КРЕМНИЯ И ИХ СОЕДИНЕНИЙ 1999
  • Бархударов Э.М.
  • Коссый И.А.
  • Костин В.В.
  • Нисельсон Л.А.
  • Тарасова Н.М.
RU2153016C1
СПОСОБ ПОЛУЧЕНИЯ ХЛОРА ИЗ ГАЗООБРАЗНОГО ХЛОРИСТОГО ВОДОРОДА 2004
  • Копосов В.В.
  • Суржикова Г.В.
  • Бейлин А.Б.
RU2253607C1
СПОСОБ КОНВЕРСИИ ХЛОРОВОДОРОДА ДЛЯ ПОЛУЧЕНИЯ ХЛОРА 2010
  • Кустов Андрей Давыдович
  • Парфенов Олег Григорьевич
RU2448038C1
СПОСОБ ПОЛУЧЕНИЯ ХЛОРА ИЗ ХЛОРОВОДОРОДА С ПОМОЩЬЮ ВОЛЬФРАМСОДЕРЖАЩИХ СОЕДИНЕНИЙ 2012
  • Кустов Андрей Давыдович
  • Парфенов Олег Григорьевич
RU2485046C1
СПОСОБ ПЕРЕРАБОТКИ ПРИРОДНОГО ГАЗА В ЖИДКИЕ УГЛЕВОДОРОДЫ 2009
  • Новосёлов Юрий Николаевич
  • Суслов Алексей Иннокентьевич
RU2417250C1
СПОСОБ ПОЛУЧЕНИЯ ХЛОРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2006
  • Волков Владимир Иванович
  • Козьмин Юрий Петрович
  • Копосов Владимир Васильевич
  • Соколов Андрей Александрович
  • Суржикова Галина Валериевна
RU2332353C2
СПОСОБ КОНВЕРСИИ УГЛЕВОДОРОДСОДЕРЖАЩИХ ГАЗОВ 2003
  • Гончаров И.В.
  • Коробочкин В.В.
  • Терещенко В.А.
  • Яворовский Н.А.
RU2249609C1
СПОСОБ НЕПОЛНОГО ОКИСЛЕНИЯ НИЗШИХ УГЛЕВОДОРОДОВ В ЭЛЕКТРИЧЕСКОМ РАЗРЯДЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1995
  • Бугаев С.П.
  • Кувшинов В.А.
  • Сочугов Н.С.
  • Хряпов П.А.
RU2088565C1
Способ получения хлорированного или хлорсульфированного полиэтилена 1984
  • Посенчук Евгений Иванович
  • Кац Макс Борисович
  • Либман Борис Яковлевич
  • Гершенович Абрам Иосифович
  • Филимонов Виктор Алексеевич
SU1260366A1
СПОСОБ НЕКАТАЛИТИЧЕСКОГО ГИДРООБЕССЕРИВАНИЯ НЕФТЕПРОДУКТОВ 2014
  • Москвин Евгений Григорьевич
  • Шиганов Игорь Николаевич
  • Горничев Алексей Алексеевич
  • Кондратьев Дмитрий Николаевич
  • Рудяк Константин Борисович
  • Тыщенко Владимир Александрович
  • Панкратов Михаил Александрович
  • Ксенофонтов Евгений Петрович
  • Ксенофонтова Ирина Алексеевна
  • Сенчило Сергей Евгеньевич
RU2579099C2

Реферат патента 2008 года СПОСОБ ПОЛУЧЕНИЯ ХЛОРА

Изобретение может быть использовано для получения хлора при утилизации абгазного хлорида водорода, образующегося в процессах хлорорганического синтеза. Способ получения хлора включает непрерывную подачу газообразной смеси, содержащей хлорид водорода и кислород, в проточную реакционную зону и окисление хлорида водорода кислородом с образованием целевого продукта. Газообразную смесь подают при давлении от 1,1 до 5,0 бар и переводят ее в состояние низкотемпературной плазмы путем воздействия импульсным электрическим разрядом. Далее осуществляют в среде образованной низкотемпературной плазмы окисление хлорида водорода кислородом, после чего газообразную смесь, содержащую продукт окисления, выводят из реакционной зоны, подвергают конденсации и выделяют целевой продукт из сконденсированной воды. Изобретение позволяет повысить степень конверсии хлорида водорода и технологическую стабильность. 3 з.п. ф-лы.

Формула изобретения RU 2 320 534 C1

1. Способ получения хлора путем непрерывной подачи газообразной смеси, содержащей хлорид водорода и кислород, в проточную реакционную зону и окисления хлорида водорода кислородом с образованием целевого продукта, отличающийся тем, что в проточную реакционную зону газообразную смесь подают при давлении от 1,1 до 5,0 бар и переводят газообразную смесь в состояние низкотемпературной плазмы путем воздействия импульсным электрическим разрядом и осуществляют в среде образованной низкотемпературной плазмы окисление хлорида водорода кислородом, после чего газообразную смесь, содержащую продукт окисления, выводят из реакционной зоны, подвергают конденсации и выделяют целевой продукт из сконденсированной воды.2. Способ получения хлора по п.1, отличающийся тем, что в качестве импульсного электрического разряда используют наносекундный стримерный разряд, образуемый при ускоряющем напряжении не менее 150 кВ, энергии в импульсе не менее 1,25 Дж, частоте следования импульсов не более 10 кГц, разрядном токе не менее 80 А.3. Способ получения хлора по п.1, отличающийся тем, что в качестве импульсного электрического разряда используют вспышечный коронный разряд, образуемый при ускоряющем напряжении от 10 до 150 кВ, энергии в импульсе не менее 1,25 Дж, частоте следования импульсов не более 10 кГц, разрядном токе не менее 10 мА.4. Способ получения хлора по п.1, отличающийся тем, что в качестве импульсного электрического разряда используют разряд, образующий несфокусированный пучок электронов при ускоряющем напряжении 150 кВ, энергии в импульсе 1,75 Дж, частоте следования импульсов 250 Гц.

Документы, цитированные в отчете о поиске Патент 2008 года RU2320534C1

Способ получения хлора из хлористого водорода 1991
  • Козлов Михаил Олегович
  • Юрин Владимир Павлович
  • Красильникова Клавдия Федоровна
  • Но Борис Иванович
SU1801943A1
СПОСОБ ПОЛУЧЕНИЯ ХЛОРА ИЗ ГАЗООБРАЗНОГО ХЛОРИСТОГО ВОДОРОДА 2004
  • Копосов В.В.
  • Суржикова Г.В.
  • Бейлин А.Б.
RU2253607C1
Способ получения хлора 1970
  • Чернюк Г.П.
  • Жуковская И.И.
  • Агроскин И.И.
  • Флид Р.М.
  • Челядин Л.И.
  • Мутовкин А.А.
  • Осипов Е.В.
  • Журавлев Ю.И.
SU331649A1
Способ получения хлора окислением хлористого водорода воздухом на катализаторах 1973
  • Салахов Мустафа Саттар
  • Гусейнов Мустафа Мамед
  • Чалабиев Чалаби Абакар
  • Ахвердиев Ислам Расул
SU487018A1
US 5935390 A, 10.08.1999
JP 62113701 A, 25.05.1987.

RU 2 320 534 C1

Авторы

Копосов Владимир Васильевич

Суржикова Галина Валерьевна

Бейлин Александр Борисович

Бейлин Михаил Борисович

Даты

2008-03-27Публикация

2006-06-20Подача