СПОСОБ ПОЛУЧЕНИЯ СТИРОЛА Российский патент 2008 года по МПК C07C1/24 C07C15/46 B01J21/04 

Описание патента на изобретение RU2323198C2

Настоящее изобретение относится к способу получения стирола, включающему газофазную дегидратацию 1-фенилэтанола при повышенной температуре в присутствии катализатора дегидратации.

Обычным способом производства стирола является совместное получение окиси пропилена и стирола из этилбензола. Вообще говоря, такой способ включает стадии: (i) взаимодействие этилбензола с кислородом или воздухом с образованием гидропероксида этилбензола, (ii) взаимодействие полученного таким образом гидроперексида этилбензола с пропеном в присутствии катализатора эпоксидирования с получением окиси пропилена и 1-фенилэтанола (известного также как α-фенилэтанол или метилфенилкарбинол), и (iii) превращение 1-фенилэтанола в стирол путем дегидратации, применяя подходящий катализатор дегидратации.

Само по себе применение катализаторов на основе окиси алюминия в дегидратации 1-фенилэтанола хорошо известно в уровне техники.

Например, в документе US A-3526674 описано применение катализатора на основе окиси алюминия в жидкофазной дегидратации 1-фенилэтанола в стирол, причем указанный катализатор на основе окиси алюминия имеет в подходящем случае площадь поверхности по БЭТ от 40 до 250 м2/г и применяется в тонко измельченной форме, т.е. в виде частиц с размером 0,15 мм (100 меш) или меньше.

В документе US A-3658928 описан способ газофазной дегидратации 1-фенилэтанола в стирол в присутствии контролируемого количества добавленного пара и в присутствии катализатора, который в подходящем случае является доступным для приобретения катализатором на основе окиси алюминия, таким как Harshaw Al-0104.

Катализатор Harshaw Al-0104 имеет объем пор примерно 0,35 мл/г. Способ дегидратации, использующий катализаторы на основе окиси алюминия (оксид алюминия: Al2О3), особенно подходящие для такого способа, был описан в документе WO 99/58480. Применение таких катализаторов делает возможным выгодное превращение 1-фенилэтанола в стирол без многих недостатков применения катализаторов предшествующего уровня. Однако даже применение этих улучшенных катализаторов все же ведет к образованию тяжелых побочных продуктов, обычно до 5% олигомеров и полимеров стирола. Эти тяжелые побочные продукты не превращаются дальше и, следовательно, снижают полный выход целевого стирола. Кроме того, эти высокомолекулярные побочные продукты стремятся занять поры катализатора, после чего катализатор больше не может использоваться для превращения 1-фенилэтанола в стирол. Это требует стадии регенерации катализатора, что неблагоприятно повышает стоимость процесса.

Таким образом, цель настоящего изобретения состоит в том, чтобы найти катализатор газофазной дегидратации 1-фенилэтанола в стирол, при котором стирол получается при улучшенной селективности, и конверсию 1-фенилэтанола можно долгое время поддерживать на высоком уровне. Это означает, что регенерировать катализатор необходимо реже.

В контексте настоящей заявки термин "стирол" охватывает также замещенные стиролы, под которыми подразумеваются стиролы, содержащие один или насколько заместителей, связанных с ароматическим циклом или с винильной группой. Такие заместители обычно включают алкильные группы, такие как метильные или этильные группы. Аналогично термин "1-фенилэтанол" также охватывает замещенные 1-фенилэтанолы, имеющие такие же заместители, как соответствующие замещенные стиролы.

Было обнаружено, что катализатор дегидратации на основе окиси алюминия, у которого площадь поверхности по БЭТ составляет от 80 до 140 м2/г и объем пор (Hg) превышает 0,65 мл/г, подходит для получения стирола путем газофазной дегидратации 1-фенилэтанола при повышенной температуре наряду с тем, что дегидратация 1-фенилэтанола поддерживается на высоком уровне в течение долгого времени. Кроме того, было найдено, что при таком способе образуется меньше тяжелых побочных продуктов, чем с катализаторами предшествующего уровня.

Объем пор (Hg) катализатора для применения в настоящем изобретении больше чем 0,65 мл/г. Предпочтительно объем пор составляет не более чем 1,0 мл/г. Более точно, катализатор предпочтительно имеет объем пор (Hg) от 0,75 до 0,85 мл/г.

Площадь поверхности по БЭТ может быть измерена любым способом, который известен как подходящий любому специалисту в данной области. Выражение "объем пор (Hg)" означает объем пор, измеренный с помощью ртути. Подходящие методы измерения пористости с помощью ртути также хорошо известны специалисту в данной области.

Формованные катализаторы на основе окиси алюминия со свойствами, необходимыми для применения в данном изобретении, могут быть приготовлены согласно процедурам, хорошо известным в уровне техники, например, выдавливанием пасты из окиси алюминия или прекурсора окиси алюминия с последующим прокаливанием. Примерами прекурсоров окиси алюминия являются гидраты окиси алюминия подобные тригидрату окиси алюминия, Al2O32O (известному также как гиббсит или байерит) и гидроксиду алюминия AlOOH (известному также как бемит или псевдобемит). Эти прекурсоры окиси алюминия преобразуются в окись алюминия в процессе прокаливания. Обычно в таком процессе порошок окиси алюминия или порошок прекурсора окиси алюминия сначала смешивают с порошком связующего (не обязательно). Подходящие связующие материалы включают неорганические оксиды, как оксиды кремния, магния, титана, алюминия, циркония и кремний-алюминия. Весовое отношение связующего к порошку окиси алюминия может составлять от 0 (связующее отсутствует) до 90:10. Обычно способную к экструдированию смесь готовят из твердой фазы (порошки окиси алюминия и, возможно, связующего) и воды путем смешения и перемешивания компонентов и пропускания этой смеси в экструдер. Такая способная к экструдированию смесь обычно выглядит как паста. Специалисты обычного уровня в данной области способны оптимизировать процедуру смешения/перемешивания для получения способной к экструдированию пасты и выбрать наиболее подходящие условия эструдирования. Помимо окиси алюминия, необязательно связующего и воды, выдавливаемая паста обычно содержит также экструзионные добавки для улучшения процесса выдавливания. Такие экструзионные добавки известны в уровне техники и включают, например, пептизаторы и флокулянты. Пептизаторы способствуют более плотной упаковке частиц в экструзионной смеси, а флокулянты способствуют включению воды. Подходящие пептизаторы известны в уровне техники и включают одновалентные неорганические кислоты (например, соляную кислоту и азотную кислоту) и органические кислоты, такие как алифатические монокарбоновые кислоты, ациклические монокарбоновые кислоты и жирные кислоты. Подходящие флокулянты также хорошо известны, они включают полиэлектролиты, такие как доступные для приобретения под торговыми марками NALCO и SUPERFLOC. Также для увеличения пористости конечного экструдата могут применяться выгораемые материалы. Примерами выгораемых материалов являются полиэтиленоксид, метилцеллюлоза, этилцеллюлоза, латекс, крахмал, ореховая скорлупа или мука, полиэтилен или любые полимерные микросферы или микровоски.

Катализатор, особенно подходящий для применения в данном изобретении, может быть сделан из псевдобемита (AlOOH). Такой порошок доступен для приобретения у компании Criterion Catalyst.

Пригодную для экструдирования смесь или пасту, полученную, как описано выше, подвергают затем экструзионной обработке. Эта экструзионная обработка может быть осуществлена обычной техникой выдавливания, известной в уровне техники. На выходе из экструдера имеется отверстие, которое придает выдавленной смеси выбранную форму при покидании ею экструдера. Если хотят получить экструдат сферической формы, влажному экструдату, вышедшему из экструдера, прежде чем он будет подвергнут прокаливанию, сначала придается сферическая форма в подходящем устройстве придания сферической формы. Частицы катализатора могут иметь любую форму, в том числе сферическую, цилиндрическую, трехдольчатую, четырехдольчатую, звездчатую, кольцевую, крестообразную и т.д. Мягкие экструдаты, полученные, как описано выше, затем сушат (необязательно) и затем подвергают стадии прокаливания. Катализатор с желаемыми свойствами может быть получен сушкой экструдатов при температурах от 100 до 140°C в течение нескольких часов с последующим прокаливанием при высокой температуре в течение нескольких часов.

Дегидратация 1-фенилэтанола в стирол согласно настоящему изобретению проводится в газовой фазе при повышенной температуре. Термин "повышенная температура" предпочтительно означает любую температуру выше 150°C. Предпочтительные условия дегидратации, которые должны применяться, являются условиями, применяемыми обычно, и включают температуры реакции от 210 до 330°C, более предпочтительно от 280 до 320°C, наиболее предпочтительно около 300°C, и давления в диапазоне от 0,1 до 10 бар, наиболее предпочтительно около 1 бара.

В способе согласно настоящему изобретению было обнаружено, что катализатор, описанный выше, имеет селективность реакции по стиролу по меньшей мере 96% при конверсии по меньшей мере 99%, а при конверсиях 99% и выше достигается селективность 97% или выше. В этой связи селективность реакции определяется как число молей стирола, образованных на моль соединения-прекурсора, превращенного в продукты. Аналогично селективность по другим соединениям, таким как тяжелые фракции, определяется как число молей соединений-прекурсоров, превращенных в тяжелые фракции, на моль соединений-прекурсоров, превращенных в продукты. Конверсия определяется как полная степень конверсии 1-фенилэтанола, как определено в условиях испытания, т.е. мольный процент прореагировавшего 1-фенилэтанола от полного числа молей 1-фенилэтанола, присутствующего в подаче. Кроме того, селективность катализатора по тяжелым побочным продуктам, таким как олигомеры и простые эфиры, очень низкая: селективность по эфирам обычно меньше 0,8%, более предпочтительно менее 0,3%, а селективность по олигомерам обычно меньше 3% и предпочтительно составляет 2% или меньше.

Далее изобретение будет проиллюстрировано следующими примерами, не ограничивающими пределы изобретения этими частными вариантами осуществления.

Пример 1

Катализатор трехдольчатой формы с физическими свойствами, указанными в таблице 1 (Ex-1), был испытан на характеристики дегидратации в установке с микропотоком, состоящей из реактора идеального вытеснения диаметром 13 мм, установки выпаривания 1-фенилэтанольного сырья и установки конденсирования паров продукта. В качестве сырья 1-фенилэтанола использовался образец технологического потока в стирольную реакторную систему серийной установки "Окись пропилена/Мономер стирол". Сырье содержало 81,2% 1-фенилэтанола, 10,6% метилфенилкетона и 2% воды. Остаток до 100% состоял из примесей и (побочных) продуктов предшествующих секций окисления и эпоксидирования. Выходной поток установки с микропотоком ожижали конденсацией, полученную двухфазную жидкую систему анализировали с помощью газохроматографического анализа.

Эксперимент по дегидратации проводили в условиях испытания: давление 1,0 бар и температура 300°C. Скорость подачи 1-фенилэтанола поддерживали на уровне 30 граммов в час, в трубку реактора загружали 20 см3 катализатора. Реакцию продолжали приблизительно 140 часов, после чего эксперимент прекращали.

Активность катализатора (конверсия) и его селективность по реакции через 50 часов работы определяли из газохроматографического анализа образцов продуктов реакции. Измеряли также активность через 120 часов. Данные приведены в таблице 1. Активность и селективность были определены выше.

Пример 2

Повторяли процедуру, описанную в примере 1, за исключением того, что использовали другие образцы сырья, содержащего 81,3% 1-фенилэтанола и 9,9% метилфенилкетона. Данные приведены в таблице 1 (Ex-2).

Сравнительный пример 1

Повторяли процедуру, описанную в примере 1, за исключением того, что катализатор трехдольчатой формы имел площадь поверхности по БЭТ 149 м2. Физические свойства указаны в таблице 1 (Comp-Ex-1). В эксперименте контролировали только конверсию 1-фенилэтанола, эксперимент был прекращен через 98 часов, когда конверсия 1-фенилэтанола составляла всего 79%.

Сравнительный пример 2

Повторяли процедуру, описанную в примере 1, за исключением того, что применяли катализатор звездчатой формы с физическими свойствами в диапазоне, какой описан в способе согласно документу WO 99/58480. Реакция продолжалась в течение приблизительно 120 часов. Данные по активности и селективности приведены в таблице 1 (Comp-Ex-2).

Сравнительный пример 3

Повторяли процедуру, описанную в примере 1, за исключением того, что применяли трехдольчатый катализатор с физическими свойствами в диапазоне, описанном в способе согласно документу WO 99/58480. Использовали образец сырья, содержащий 79,0% 1-фенилэтанола и 10,0% метилфенилкетона. Данные приведены в таблице 1 (Comp-Ex-3). Эксперимент прекращали через 113 часов, когда конверсия 1-фенилэтанола была всего 91%. Данные по активности и селективности приведены в таблице 1 (Comp-Ex-3).

Таблица 1
Свойства и характеристики катализатора
Ex-1Ex-2Comp-Ex-1Comp-Ex-2Comp-Ex-3Площадь поверхности (БЭТ, м2/г)11011014910084Объем пор (Hg, мл/г)0,770,770,840,570,44Диаметр частиц (мм)2,52,52,53,62,5Конверсия (%) через 50 ч99,999,998,099,799,9Селективность по стиролу (%) через 50 ч96,596,5(a)95,995,0Селективность по тяжелым фракциям (простые эфиры + олигомеры) (%) через 50 ч3,03,0(a)3,54,3Конверсия (%) через 120 ч99,799,8(b)97,3(c)(a) не определено
(b) эксперимент остановлен через 98 часов, когда конверсия была равна 79%
(c) эксперимент остановлен через 113 часов, когда конверсия была равна 91%

Похожие патенты RU2323198C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ДЕГИДРАТАЦИИ МЕТИЛФЕНИЛКАРБИНОЛА 2020
  • Ламберов Александр Адольфович
  • Борецкая Августина Вадимовна
RU2750657C1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ ДЕГИДРАТАЦИИ МЕТИЛФЕНИЛКАРБИНОЛА 2018
  • Дзержинский Рюрик Владимирович
  • Дзержинский Владимир Рюрикович
  • Федотов Анатолий Валентинович
  • Ванчурин Виктор Илларионович
RU2721906C2
СПОСОБ ПОЛУЧЕНИЯ СТИРОЛА И/ИЛИ ЗАМЕЩЕННОГО СТИРОЛА 2008
  • Бос Алауисиус Николас Рене
  • Корадиа Прамод Б.
RU2469999C2
СПОСОБ ПОЛУЧЕНИЯ СТИРОЛА 2003
  • Буленс Минне
  • Низбет Тимоти Майкл
RU2315760C2
СПОСОБ ПОЛУЧЕНИЯ СТИРОЛА 2016
  • Ван Маурик Ариан
RU2716265C2
МОНОЛИТНЫЙ КАТАЛИЗАТОР И ЕГО ПРИМЕНЕНИЕ 2010
  • Мабанде Годвин Тафара Петер
  • Кхин Су Йинн
  • Шиндлер Гетц-Петер
  • Кермер Геральд
  • Хармс Дитер
  • Рабе Буркхард
  • Фурбекк Ховард
  • Зеель Оливер
RU2553265C2
ГИДРИРОВАНИЕ АРОМАТИЧЕСКИХ СОЕДИНЕНИЙ 2006
  • Рю Дж. Юн
RU2391326C1
СПОСОБ ПОЛУЧЕНИЯ АРАЛКЕНОВ 1972
  • Иностранцы Митчелл Бекер Саргис Кообиар
  • Соединенные Штаты Америки
  • Иностранна Фирма Халкон Интернэшнл Инк
  • Соединенные Штаты Америки
SU353403A1
СПОСОБ ЖИДКОФАЗНОГО ОКИСЛЕНИЯ ЭТИЛБЕНЗОЛА ДО ГИДРОПЕРЕКИСИ ЭТИЛБЕНЗОЛА 2007
  • Бреед Антониус Йоханнес Мария
  • Хортон Эндрю Дэвид
  • Клюсенер Петер Антон Аугуст
RU2464260C2
СПОСОБ ПОЛУЧЕНИЯ АЛКИЛЕН-ОКСИДА 2004
  • Плумен Ингмар Хубертус Йозефина
  • Схаутен Эдуардус Петрус Симон
  • Ван Дер Вен Александер Ян
RU2354654C2

Реферат патента 2008 года СПОСОБ ПОЛУЧЕНИЯ СТИРОЛА

Изобретение относится к способу получения стирола и включает газофазную дегидратацию 1-фенилэтанола при повышенной температуре в присутствии катализатора дегидратации, в котором катализатор дегидратации включает формованные частицы катализатора на основе окиси алюминия с площадью поверхности (по БЭТ) от 80 до 140 м2/г и объемом пор (Hg) более 0,65 мл/г. Применение способа позволяет уменьшить количество образующихся побочных продуктов и увеличить время работы катализатора до его регенерации. 2 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 323 198 C2

1. Способ получения стирола, включающий газофазную дегидратацию 1-фенилэтанола при повышенной температуре в присутствии катализатора дегидратации, в котором катализатор дегидратации включает формованные частицы катализатора на основе окиси алюминия с площадью поверхности (по БЭТ) от 80 до 140 м2/г и объемом пор (Hg) более 0,65 мл/г.2. Способ по п.1, причем объем пор (Hg) катализатора составляет от 0,75 до 0,85 мл/г.3. Способ по п.1 и/или 2, причем катализатор на основе окиси алюминия приготовлен из псевдобемита.

Документы, цитированные в отчете о поиске Патент 2008 года RU2323198C2

СПОСОБ ПОЛУЧЕНИЯ ОЛЕФИНОВ И КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ ОЛЕФИНОВ 2001
  • Бусыгин В.М.
  • Каралин Э.А.
  • Харлампиди Х.Э.
  • Мирошкин Н.П.
  • Ксенофонтов Д.В.
  • Белокуров В.А.
  • Васильев И.М.
  • Галимзянов Р.М.
  • Заляев А.Г.
RU2194690C1
WO 9958480 A, 18.11.1999
СПОСОБ ПОЛУЧЕНИЯ АРАЛКЕНОВ 0
  • Иностранцы Митчелл Бекер Саргис Кообиар
  • Соединенные Штаты Америки
  • Иностранна Фирма Халкон Интернэшнл Инк
  • Соединенные Штаты Америки
SU353403A1

RU 2 323 198 C2

Авторы

Ван Брукховен Йоханнес Адрианус Мария

Местерс Каролус Маттиас Анна Мария

Даты

2008-04-27Публикация

2004-02-24Подача