СПОСОБ ИЗВЛЕЧЕНИЯ РАДИОНУКЛИДОВ ИЗ ВОДНЫХ РАСТВОРОВ Российский патент 2008 года по МПК G21F9/12 

Описание патента на изобретение RU2330340C2

Изобретение относится к области сорбционной технологии извлечения радионуклидов из водных сред и может быть использовано для очистки сбросных растворов радиохимических производств, природных водных растворов от опасных радиоактивных загрязнителей путем их извлечения в сорбент.

Известен способ очистки водоемов от радиоактивных изотопов Sr-90 и Cs-137 путем внесения в него природного сорбента, в качестве которого используют цеолитовый порошок или отходы глиноземного производства - красный шлам, а в качестве осадителя - мирабилит, и производят также дополнительную очистку воды водными растениями, которые предварительно высаживают в водоем (заявка на выдачу патента РФ №2003134820, МПК G21F 09/20, опубл. 10.05.2003).

Недостаток известного способа в том, что он неэффективен при наличии изотопов урана или плутония и требует продолжительного времени для проведения очистки.

Известен способ очищения водных сбросов атомных электростанций путем выделения из них радионуклидов с помощью неорганических ионообменников - цианоферратов кобальта - калия (выделение цезия), сурьмяной кристаллической кислоты (выделение стронция) ("Методы химического и радиохимического контроля в ядерной энергетике". Л.Н.Москвин, М.Ф.Гумеров, А.А.Ефимов и др. под ред. Л.Н.Москвина, М., Энергоатомиздат, 1989).

Недостатком данного способа является необходимость применения в сорбционной технологии большого числа дорогих и технологически неудобных для дальнейшей переработки ионообменных материалов.

Известен сорбционный способ, в котором в качестве сорбента используют гидрат силиката кальция состава CaSiO3H2O (El-Korashy S.A. "Synthetic Crystalline Calcium Silicate Hydrate (I): Cation Exchange and Caesium Selectivity", Monatshefte fur Chemie, 2002, v.133, pp.333-343). Известный сорбент проявляет ионообменную селективность по отношению к двухзарядным катионам Ni, Hg, Cu, Cd (Kd равен 800-1000). Частичное замещение кальция в сорбенте на натрий придает ему селективность к ионам цезия (Kd˜1000).

Данный способ характеризуется низкой величиной коэффициента распределения при извлечении радионуклидов из растворов, содержащих постоянный электролит.

В качестве прототипа выбран способ извлечения радионуклидов из водных растворов в динамическом режиме с помощью неорганического композиционного сорбента, содержащего смешанный гексацианоферрат определенных металлов и воду (патент РФ №2113024, МПК G21F 09/12 от 20.02.96). Наиболее эффективно обеспечивается данным способом извлечение радионуклидов цезия.

Однако данный способ характеризуется невысоким коэффициентом распределения по отношению к другим радионуклидам, например урану, плутонию, стронцию. Особенно это относится к работе с растворами, содержащими посторонний электролит, что, как правило, характерно для всех природных и техногенных водных растворов.

Задача, стоящая перед данным изобретением, заключалась в создании способа извлечения радионуклидов из водных растворов, преимущественно, радиохимических производств, природных водных растворов, с использованием в качестве сорбента недорого неорганического материала, обладающего высокими значениями коэффициента распределения по отношению к целому ряду радионуклидов.

Поставленная задача решена тем, что в способе извлечения радионуклидов из водных растворов в динамическом режиме с помощью композиционного неорганического сорбента, согласно изобретению в качестве композиционного неорганического сорбента используют немагнитную фракцию продукта переработки металлургического шлака, имеющую следующий состав: (1) силикат кальция Ca2SiO4, (2) оксид железа - лития Li9,28Fe21,34O32, (3) коэзит SiO2, (4) железистый гроссуляр Са3Al1,332Fe0,668Si3O12, (5) рингвудит Fe2SiO4, (6) алюмосиликат натрия Na14,88Al15,26Si32,74O96, при этом процесс осуществляют при начальном значении рН не менее 2 и конечном значении рН не более 14.

Исследования сорбционного процесса с использованием указанного материала, состоящего из перечисленных фракций, показали, что сорбционный процесс происходит по необменному механизму за счет частичного растворения компонентов сорбционного материала. Все же известные сорбенты используют, в основном, ионообменный механизм сорбции. Необменный механизм отличается тем, что двух- и трехразрядные ионы переходят в раствор и реагируют с молекулами воды в соответствии со стехиометрией, изменяя химический состав раствора и рН и соответственно обеспечивая высокое сорбционное сродство сорбируемых из раствора радионуклидов к сорбенту. При этом величина коэффициента распределения остается довольно высокой для целого ряда радионуклидов, таких как цезия, урана, плутония, стронция. Выбор условия проведения реакции является наиболее оптимальным для получения необходимого результата.

В таблице приведены результаты сравнения сорбционных свойств гидрата силиката кальция, обеспечивающего ионообменный механизм сорбции, и композиционного неорганического сорбента, используемого в заявляемом способе. Положительным эффектом предлагаемого технического решения является практически полное извлечение из водной фазы радионуклидов урана и плутония в диапазоне рН раствора 3-11 при увеличение в 20 раз коэффициента распределения сравниваемых ионов цезия с учетом того, что Kd у предлагаемого материала получен на природной воде озера Иткуль.

ТаблицаНаименование
свойств сорбента
Наименование сорбента
Способ ионообменной сорбции гидратом силиката кальцияПредлагаемый способ необменной сорбции на неорганическом материале фазового состава: (1)-(6)Полная обменная емкость, мг-экв/г2-10Ионный обмен отсутствуетКислотность растворарН=3рН=8рН=3рН=8Коэффициент распределения Kd, мл/гU-235--3100007550Pu-239--56008500Sr-90--130160Cs-1377,5->140120рН раствора после сорбциине меняется1111Возможность иммобилизации в цементимеетсяимеется

Обеспечение динамического режима извлечения производят либо путем перемешивания водного раствора с гранулированным композиционным сорбентом, либо при истечении водного раствора через гранулированный композиционный сорбент.

Радиоактивные растворы готовят на озерной воде внесением рассчитанного количества радионуклида, U-235, Pu-239, Cs-137, Sr-90. Солесодержание озерной воды составляет 0,25 г/л и характеризуется в основном ионами Na, K, Са, SO, Cl и рН=7,65.

В емкость с водным раствором, содержащим радионуклиды и ионы металлов природного или технического состава, помещают сорбент фазового состава: (1) - силикат кальция Са2SiO4, (2) - оксид железа-лития Li9,28Al21,34O32, (3) - коэзит SiO2, (4) - железистый гроссуляр Са3Al1,332Fe0,668Si3O12, (5) - рингвудит Fe2SiO4, (6) - алюмосиликат натрия Na14,88Al15,26Si32,74O96. Кислотность раствора устанавливают более, добавляя необходимое количество NaOH. Процесс сорбции ведут до установления рН раствора в диапазоне 10-14. Коэффициент распределения Kd (мг/г) используемого сорбента определяют путем измерения исходной Со (до сорбции) и равновесной С (после сорбции) удельной активности контролируемого радионуклида в растворе и вычисления коэффициента распределения по известной формуле Kd=(v/m)(Co-C)/C, где v - объем жидкой фазы (мл), m - масса сорбента.

Предлагаемое техническое решение иллюстрируется следующими примерами.

Пример 1. В емкость помещают раствор озерной воды с рН=3 и известным содержанием радионуклида, U-235, Pu-239, Cs-137, Sr-90. Затем добавляют сорбент в соотношении "твердое/жидкое" = 1/100. Раствор выдерживают при температуре 22°С и перемешивании, измеряя каждые 0,5 часа значения рН до установления постоянного рН. Процесс сорбции завершают, отделяют сорбент от раствора отстаиванием. После определения в пробе раствора конечной концентрации контролируемых радионуклидов методами альфа-, бета- и гамма-радиометрии рассчитывают величины Kd для каждого металла по приведенной выше формуле. Kd приведены в таблице.

Пример 2. В емкость помещают раствор озерной воды с рН=8 и известным содержание радионуклида, U-235, Pu-239, Cs-137, Sr-90. Затем добавляют сорбент в соотношении "твердое/жидкое" = 1/100. Раствор выдерживают при температуре 22°С и перемешивании, измеряя каждые 0,5 часа значения рН до установления постоянного рН. Процесс сорбции завершают, отделяют сорбент от раствора отстаиванием. После определения в пробе раствора конечной концентрации контролируемых радионуклидов методами альфа-, бета- и гамма-радиометрии рассчитывают величины Kd для каждого металла по приведенной выше формуле. Kd приведены в таблице.

Пример 3. В хроматографическую колонку помещают 2 грамма сорбента и пропускают 200 мл раствора озерной воды с рН=3 и известным содержание радионуклида, U-235, Pu-239, Cs-137, Sr-90 при скорости истечения 1,5 см/мин. Измеряя содержание радионуклида во фракциях фильтрата, определяют величину удерживаемого объема и вычисляют долю радионуклида, сорбированного колонкой с загрузкой (100%): U-100; Pu-100; Cs-78, Sr-74.

Пример 4. В хроматографическую колонку помещают 2 грамма сорбента и пропускают 200 мл раствора озерной воды с рН=8 и известным содержание радионуклида, U-235, Pu-239, Cs-137, Sr-90 при скорости истечения 1,5 см/мин. Измеряя содержание радионуклида во фракциях фильтрата, определяют величину удерживаемого объема и вычисляют долю радионуклида, сорбированного колонкой с загрузкой (100%): U-100; Pu-100; Cs-68, Sr-80.

Пример 5. Через хроматографические колонки, полученные в примерах 3-4 пропускают 200 мл раствора озерной воды с рН=7,5 без введенного радионуклида при скорости истечения 1,5 см/мин. Измеряя содержание радионуклида во фракциях фильтрата, определяют величину концентрации десорбированного радионуклида и вычисляют долю радионуклида, десорбированного из колонки с загрузкой (100%): U-0; Pu-0; Cs-7; Sr-6.

Предлагаемое техническое решение позволяет не только эффективно решать технологические задачи удаления большого числа радионуклидов из природных и техногенных вод, но и отверждать, иммобилизировать сорбционный продукт в составе цемента.

Похожие патенты RU2330340C2

название год авторы номер документа
СПОСОБ ИЗВЛЕЧЕНИЯ ИОНОВ МЕТАЛЛОВ ИЗ ВОДНЫХ РАСТВОРОВ 2005
  • Поляков Евгений Валентинович
  • Барышева Нина Михайловна
  • Швейкин Геннадий Петрович
  • Овчинников Николай Александрович
  • Пашкеев Игорь Юльевич
  • Цветохин Александр Григорьевич
  • Михайлов Геннадий Георгиевич
  • Сенин Анатолий Владимирович
  • Бамбуров Виталий Григорьевич
  • Аврорин Евгений Николаевич
RU2297275C2
СПОСОБ ИЗВЛЕЧЕНИЯ РАДИОНУКЛИДОВ И МИКРОЭЛЕМЕНТОВ 2013
  • Поляков Евгений Валентинович
  • Волков Илья Владимирович
  • Хлебников Николай Александрович
  • Ремез Виктор Павлович
  • Бердников Игорь Александрович
RU2550343C1
СПОСОБ ДЕЗАКТИВАЦИИ РАДИОАКТИВНЫХ СРЕД 2008
  • Овчинников Николай Александрович
  • Грехова Ирина Николаевна
  • Докичев Владимир Анатольевич
  • Ахмадуллин Камиль Рамазанович
  • Томилов Юрий Васильевич
  • Нефедов Олег Матвеевич
RU2389094C2
СПОСОБ ПОЛУЧЕНИЯ ТОНКОСЛОЙНОГО СОРБЕНТА 2007
  • Цветохин Александр Григорьевич
  • Бетенеков Николай Дмитриевич
RU2356619C1
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 1998
  • Богданович Н.Г.
  • Коновалов Э.Е.
  • Старков О.В.
  • Кочеткова Е.А.
  • Грушичева Е.А.
  • Шумская В.Д.
  • Емельянов В.П.
  • Мышковский М.П.
  • Любченко Н.Ф.
RU2154317C2
СПОСОБ РЕАБИЛИТАЦИИ РАДИОАКТИВНО-ЗАГРЯЗНЁННЫХ ПОЧВ 2023
  • Воронина Анна Владимировна
  • Байтимирова Марина Олеговна
  • Семенищев Владимир Сергеевич
RU2812709C1
СПОСОБ ОБЕЗВРЕЖИВАНИЯ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2000
  • Мартынов П.Н.
  • Богданович Н.Г.
  • Григорьев Г.В.
RU2189650C2
СПОСОБ ПОЛУЧЕНИЯ НЕОРГАНИЧЕСКОГО ФЕРРОЦИАНИДНОГО СОРБЕНТА (ВАРИАНТЫ) 2019
  • Воронина Анна Владимировна
  • Ноговицына Елена Викторовна
  • Семенищев Владимир Сергеевич
  • Блинова Марина Олеговна
RU2746194C2
КОМПОЗИЦИОННЫЙ СОРБЕНТ НА ОСНОВЕ СИЛИКАТОВ КАЛЬЦИЯ 2011
  • Морозова Алла Георгиевна
  • Лонзингер Татьяна Мопровна
  • Михайлов Геннадий Георгиевич
RU2481153C2
КОМПОЗИЦИОННЫЙ ГРАНУЛИРОВАННЫЙ СОРБЕНТ НА ОСНОВЕ СИЛИКАТОВ КАЛЬЦИЯ 2014
  • Морозова Алла Георгиевна
  • Лонзингер Татьяна Мопровна
  • Михайлов Геннадий Георгиевич
  • Скотников Вадим Анатольевич
  • Беркович Лазер Исаакович
RU2575044C1

Реферат патента 2008 года СПОСОБ ИЗВЛЕЧЕНИЯ РАДИОНУКЛИДОВ ИЗ ВОДНЫХ РАСТВОРОВ

Изобретение относится к области сорбционной технологии извлечения радионуклидов из водных сред и может быть использовано для очистки сбросных растворов радиохимических производств, природных водных растворов от опасных радиоактивных загрязнителей путем их извлечения в сорбент. Предлагаемый способ обеспечивает извлечение радионуклидов урана, плутония, цезия, стронция из водных растворов путем сорбции с использованием в качестве сорбента немагнитной фракции продукта переработки металлургического шлака, имеющей следующий состав: силикат кальция Ca2SiO4, оксид железа-лития Li9,28Fe21,34O32, коэзит SiO2, железистый гроссуляр Ca3Al1,332Fe0,668Si3O12, рингвудит Fe2SiO4, алюмосиликат натрия Na14,88Al15,26Si32,74O96. Процесс осуществляют при начальном значении рН не менее 2-х и конечном значении рН не более 14-ти. Изобретение позволяет извлекать радионуклиды из водных растворов с использованием в качестве сорбента недорогого неорганического материала, обладающего высокими значениями коэффициента распределения по отношению к целому ряду радионуклидов. 1 табл.

Формула изобретения RU 2 330 340 C2

Способ извлечения радионуклидов из водных растворов в динамическом режиме с помощью композиционного неорганического сорбента, отличающийся тем, что в качестве композиционного неорганического сорбента используют немагнитную фракцию продукта переработки металлургического шлака, имеющего следующий состав: силикат кальция Ca2SiO4, оксид железа - лития Li9,28Fe21,34O32, коэзит SiO2, железистый гроссуляр Ca3Al1,332Fe0,668Si3O12, рингвудит Fe2SiO4, алюмосиликат натрия Na14,88Al15,26Si32,74O96, при этом процесс осуществляют при начальном значении рН не менее 2 и конечном значении рН не более 14.

Документы, цитированные в отчете о поиске Патент 2008 года RU2330340C2

НЕОРГАНИЧЕСКИЙ СФЕРОГРАНУЛИРОВАННЫЙ КОМПОЗИЦИОННЫЙ СОРБЕНТ НА ОСНОВЕ ГИДРОКСИДА ЦИРКОНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1996
  • Шарыгин Л.М.
  • Моисеев В.Е.
  • Муромский А.Ю.
  • Барыбин В.И.
RU2113024C1
СПОСОБ СОРБЦИОННОГО ИЗВЛЕЧЕНИЯ ТОРИЯ ИЗ ГРУНТА, ПРИРОДНЫХ И ТЕХНОЛОГИЧЕСКИХ ВОД 2001
  • Третьяк А.Я.
  • Чернышова Н.А.
  • Коваленко А.С.
  • Сидоренко П.Ф.
  • Брагинец В.А.
  • Павлунишин П.А.
  • Денисенко В.В.
RU2212068C2
Влагоотделитель 1986
  • Ефимов В.В.
  • Сурков А.И.
SU1358139A1
Способ упрочения металлических изделий 1948
  • Шофман Л.А.
SU77686A1

RU 2 330 340 C2

Авторы

Аврорин Евгений Николаевич

Бамбуров Виталий Григорьевич

Барышева Нина Михайловна

Иванов Иван Иванович

Михайлов Геннадий Георгиевич

Пашкеев Игорь Юльевич

Поляков Евгений Валентинович

Овчинников Николай Александрович

Цветохин Александр Григорьевич

Швейкин Геннадий Петрович

Даты

2008-07-27Публикация

2006-03-13Подача