Предлагаемое изобретение относится к области металлургии, а именно к способам защиты струи металла из сталеразливочного ковша в промежуточный в процессе непрерывной разливки на машине непрерывного литья.
Известен способ непрерывной разливки стали, включающий различные способы защиты от вторичного окисления струи металла и поверхности в кристаллизаторе (см. Защита стали в процессе непрерывной разливки. А.В.Лейтес, М.: Металлургия, 1984, с.18-23, рис.7 - XVI).
Ближайшим аналогом заявленного способа непрерывной разливки стали на машине непрерывного литья является способ, включающий подачу стали из сталеразливочного в промежуточный ковш через огнеупорную трубу под уровень металла в промежуточном ковше, подачу аргона в огнеупорную трубу, подачу стали из промежуточного ковша в кристаллизаторы и вытягивание из них слитков, а также определение содержания в стали азота, в процессе разливки в огнеупорную трубу дополнительно подают азот, при этом долю азота в смеси газов устанавливают по определенной зависимости (RU 2154544 C1, B22D 11/10, 20.08.2000).
Характерным дефектом поверхности литых слябов толщиной до 8 мм являются газовые пузыри диаметром до 1 мм. Плотность распределения таких пузырей возрастает с приближением к поверхности сляба.
Аргон нерастворим в жидкой и твердой стали. Наличие в подкорковых слоях литого сляба пузырьков, содержащих аргон, может привести при прокатке к образованию полостей с развитой поверхностью, заполненных аргоном.
Источником образования пузырьков аргона в жидком металле в кристаллизаторе является поддув его через стопор-моноблок промежуточного ковша, а также обдув аргоном через кольцевой коллектор места стыкового соединения стакана-дозатора с погружным стаканом.
Техническим результатом известного технического решения является повышение точности содержания азота в разливаемом металле. При этом характерным дефектом поверхностных слоев литых слябов являются газовые пузыри диаметром до 1 мм. Плотность распределения таких пузырей возрастает с приближением к поверхности сляба.
Принципиальное отличие технологии разливки согласно предлагаемому изобретению связано с заменой аргона азотом.
Азот подводили через кольцевой коллектор к стыковому соединению стакана-дозатора промежуточного ковша с погружным стаканом, а также азот продували через стопор-моноблок в промежуточном ковше.
Результаты качества опытных и сравнительных плавок представлены в таблицах 1-3.
В таблице 1 приведены данные по зачистке и отсортировке толстого листа стали S 355 разлитой в слябы сечением 250×1850 мм. Из таблицы видно, что объем зачистки листов из опытных плавок снижен в 4,2 раза.
Сечение сляба - 250×1850 мм; габариты листа - 43×2500×9000 мм.
Чистота аргона и азота равны 99,9 и 98,5% соответственно.
Расход аргона на обдув - 8 м3/ч.
Сравнительная оценка объемов зачистки и отсортировки штрипсов из стали марки 09Г2ФБ приведены в таблице 2.
Сечение сляба - 250×1850 мм; габариты листа - 11×2529×12000 мм.
Чистота аргона - 99,9%; азота - 99,9%.
Расход аргона через кольцевой коллектор и стопор-моноблок составил 8 и 0,35 м3/ч соответственно.
На данной серии плавок аргон (на сравнительных плавках) и азот (на опытных плавках) подавались по описанной выше технологии. Чистота азота и аргона составляла 99,9%. Как следует из данных этой таблицы, замена аргона азотом позволила снизить объем зачистки листов с 12,0% до 3,2%, т.е. в 3,5 раза. Объем отсортировки листов снизился с 2,92 до 1,26%.
На опытных плавках этой марки отсортировки листов по поверхностным дефектам не было, а отсортировка листов сравнительных плавок по этому дефекту составляла 1,46%.
Результаты оценки качества поверхности листов стали ДН-36 опытных и сравнительных плавок приведены в таблице 3.
Габариты листа - 15×2400×12000 мм. Из 1 крата прокатываются 2 листа.
Ar - чистота 99,9%; N2 - чистота 99,5%.
Подача газа в этой серии плавок осуществлялась только через стопор-моноблок промежуточного ковша.
Данные, приведенные в таблицах, свидетельствуют о высокой эффективности замены аргона азотом в повышении качества поверхности листов опробованных марок стали, а также показывают, что в металле опытных плавок содержание азота в пробах из кристаллизатора по сравнению с содержанием азота в промежуточном ковше несколько увеличивается (с 0,007 до 0,008%), но не выходит за предельное содержание.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРОИЗВОДСТВА ОСОБОНИЗКОУГЛЕРОДИСТОЙ СТАЛИ | 2013 |
|
RU2517626C1 |
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ | 1998 |
|
RU2121513C1 |
СПОСОБ НЕПРЕРЫВНОГО ЛИТЬЯ МЕТАЛЛОВ ПРИ ПЕРЕХОДНЫХ РЕЖИМАХ ЛИТЬЯ | 2004 |
|
RU2255832C1 |
СПОСОБ ПРОИЗВОДСТВА ОСОБОНИЗКОУГЛЕРОДИСТОЙ СТАЛИ | 2014 |
|
RU2564205C1 |
СПОСОБ НЕПРЕРЫВНОЙ РАЗЛИВКИ СТАЛИ "ПЛАВКА НА ПЛАВКУ" НА СЛЯБОВЫЕ И БЛЮМОВЫЕ ЗАГОТОВКИ | 2006 |
|
RU2315680C2 |
ТЕПЛОИЗОЛИРУЮЩАЯ СМЕСЬ ДЛЯ ЗАЩИТЫ И ТЕПЛОИЗОЛЯЦИИ МЕТАЛЛА В ПРОМЕЖУТОЧНОМ И СТАЛЕРАЗЛИВОЧНОМ КОВШАХ ПРИ НЕПРЕРЫВНОЙ РАЗЛИВКЕ СТАЛИ | 2005 |
|
RU2308350C2 |
СПОСОБ НЕПРЕРЫВНОЙ РАЗЛИВКИ СТАЛИ | 2010 |
|
RU2422239C1 |
СПОСОБ НЕПРЕРЫВНОЙ РАЗЛИВКИ СТАЛИ | 2010 |
|
RU2428274C1 |
Способ получения непрерывно-литых заготовок | 1990 |
|
SU1787065A3 |
ПРОМЕЖУТОЧНЫЙ КОВШ ДЛЯ НЕПРЕРЫВНОЙ РАЗЛИВКИ СТАЛИ | 2001 |
|
RU2185261C1 |
Изобретение относится к непрерывной разливке стали. Сталь подают в кристаллизатор из промежуточного ковша через погружной стакан. Из промежуточного ковша и кристаллизатора отбирают пробы жидкой стали и определяют содержание азота в них. В погружной стакан и/или в монолитный стопор промежуточного ковша вводят азот чистотой 99,9-99,0% с расходом, обеспечивающим повышение содержания азота в пробах стали из кристаллизатора по сравнению с пробами стали из промежуточного ковша на 0,0002-0,0010%. Обеспечивается повышение качества поверхности листов стали. 3 табл.
Способ непрерывной разливки стали на машине непрерывного литья, включающий подачу стали из сталеразливочного ковша в промежуточный ковш через огнеупорную трубу, подачу стали из промежуточного ковша в кристаллизатор через погружной стакан, отбор проб жидкой стали и определение содержания азота в них, отличающийся тем, что в погружной стакан и/или в монолитный стопор промежуточного ковша вводят азот чистотой 99,9-99,0% с расходом, обеспечивающим повышение содержания азота в пробах стали из кристаллизатора по сравнению с пробами стали из промежуточного ковша на 0,0002-0,0010%.
СПОСОБ НЕПРЕРЫВНОЙ РАЗЛИВКИ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ | 1999 |
|
RU2154544C1 |
СПОСОБ ПОТОЧНОГО ВАКУУМИРОВАНИЯ СТАЛИ С ОСОБОНИЗКИМ СОДЕРЖАНИЕМ УГЛЕРОДА ПРИ НЕПРЕРЫВНОЙ РАЗЛИВКЕ | 1995 |
|
RU2092274C1 |
МОРОЗОВ А.Н | |||
Водород и азот в стали | |||
- М.: Металлургия, 1968, с.202 | |||
Способ защиты струи металла при непрерывной разливке | 1989 |
|
SU1668016A1 |
Способ защиты струи металла | 1988 |
|
SU1586850A1 |
Авторы
Даты
2008-09-27—Публикация
2006-10-19—Подача