СПОСОБ МОЛЕКУЛЯРНОГО ОКИСЛЕНИЯ ЭТИЛЕНА Российский патент 2008 года по МПК C07D301/10 C07D303/04 

Описание патента на изобретение RU2335498C2

Область техники

Настоящее изобретение относится к способу окисления этилена в этиленоксид, в котором окисление проводят на твердом катализаторе в неподвижном слое, представляющем собой смесь гетерогенного активного катализатора окисления, например нанесенного серебряного катализатора, и инертного твердого разбавителя, обработанного основанием.

Уровень техники

В области окисления этилена в этиленоксид принято использовать слои со ступенчатой каталитической активностью (Британский патент 721412) и применяют системы, в которых отходящий поток быстро охлаждают путем контакта с инертными твердыми веществами, см. патенты США 4061659, 4376209, 5292904 и 4642360.

В таких системах, где катализатор окисления разбавлен инертным веществом, существует проблема, заключающаяся в том, что инертный разбавитель реально промотирует разложение целевого продукта. Другими словами, инертный разбавитель не является полностью инертным, а скорее содержит активные центры на поверхности, которые приводят к потере продукта.

Сущность изобретения

Согласно настоящему изобретению было найдено, что нежелательной потери продукта - этиленоксида, вызванной разбавлением катализатора инертами, можно существенно избежать путем обработки инертного разбавителя основанием до приготовления смеси с активным катализатором.

Подробное описание изобретения

При загрузке в промышленный реактор нанесенного катализатора, например Ag/оксида алюминия, для оксиления этилена до этиленоксида важно вводить инертное вещество внутрь слоя катализатора для разделения слоев или разбавления. Или инертное вещество можно помещать на выходе из слоя. В любом случае весьма желательно, чтобы частицы инертного вещества имели такой же размер и конфигурацию, как частицы катализатора или его таблетки. Наиболее подходящим является инертное вещество из того же носителя, который использовали для приготовления катализатора. Авторы обнаружили, что обработка носителя любым щелочным металлом сохраняет его инертность и делает его пригодным для разбавления слоя катализатора или расслаивания, что помогает избежать потери продукта.

Для традиционного окисления этилена на катализаторе на основе серебра выбирают в качестве носителя оксид алюминия. Обычно носитель из оксида алюминия имеет активную поверхность, которая может вызывать разложение продукта - этиленоксида. Авторы обнаружили, что нанесение небольшого количества любой соли щелочного металла на поверхность носителя нейтрализует его активность, оставляя его инертным, что позволяет избежать разложения продукта.

В предшествующем уровне техники для приготовления катализаторов с повышенной активностью использовали соли «высших щелочных металлов». Наиболее часто применяемой добавкой является цезий, хотя заявлялось, что смеси Cs и других щелочных металлов также повышают каталитическую активность. Сообщалось, что «низшие щелочные металлы» - Li и Na - незначительно повышают активность. При этом способе приготовления, однако, носитель, обработанный щелочным металлом, содержит также серебро и другие промоторы.

Наиболее доступные промышленные носители для катализаторов содержат одну или более солей щелочных металлов, в частности соль натрия. Часть щелочного металла, присутствующего на поверхности, играет роль нейтрализатора для центров разложения на поверхности носителя. Авторы установили, что удаление солей щелочных металлов с поверхности приводит к росту активности поверхности и также деструктивной способности носителя. Однако обычно количества щелочных металлов на поверхности носителя недостаточно для нейтрализации всех центров, вызывающих разложение. Поэтому согласно настоящему изобретению нанесение дополнительного количества щелочного металла существенно для получения полностью не активной поверхности.

Определить минимальные количества солей щелочных металлов, необходимые для нейтрализации всех центров разложения на поверхности носителя, затруднительно. Число активных центров зависит от многих факторов, например от величины поверхности носителя, различных добавок в его составе, процесса прокаливания носителя, а также химии его поверхности. Однако нет ничего опасного в том, чтобы добавить большое количество солей щелочных металлов, которое превышает количество, необходимое для нейтрализации всех активных центров. Вообще количество соли щелочного металла на поверхности должно быть больше 5 мг-атом/кг носителя и до примерно 2 мас.% от инертного носителя. В качестве солей щелочных металлов в изобретении используют соли натрия, калия, рубидия и цезия.

Концентрации щелочных металлов на поверхности носителя определяют с помощью теста кислотного вышелачивания. В таком тесте образец носителя помещают в раствор азотной кислоты. Концентрации щелочных металлов в полученном растворе определяют методом атомно-абсорбционной спектрофотометрии на приборе «Varian AA-I 10» в ацетилен-воздушном пламени. Или же количественный анализ проводят путем помещения растворов в спектрофотометр с индукционно-связанной плазмой «Spectro-analytical EOP ICP».

При осуществлении настоящего изобретения инертное твердое вещество в виде частиц, предварительно обработанных основанием, смешивают с традиционным катализатором окисления в таком соотношении, чтобы получить желаемое разбавление.

Для получения этиленоксида обработанное инертное вещество смешивают с традиционным серебряным катализатором, например, с таким, который описан в патентах США 5504052, 5646087, 57736483, 5703001, 4356312, 4761394.

При обработке основанием инертный носитель вымачивают в водном растворе соединений щелочных металлов, таких как гидроксиды, карбонаты, ацетаты и других в течение времени, достаточного для нанесения основания на поверхность носителя, например, от 1 мин до 10 час или дольше.

Носитель вынимают из раствора основания и сушат, после чего он пригоден для смешивания с гетерогенным катализатором окисления.

Вообще инертное вещество, обработанное основанием, подмешивают в количествах в интервале от примерно 5 до 80 мас.% общей массы инертного вещества и катализатора, хотя, как показано выше, инертное вещество, обработанное основанием, может составлять 100% твердого вещества в зоне предварительного нагрева реакционной трубки.

ПРИМЕРЫ

Пример 1 (сравнительный)

Катализатор получения этиленоксида готовили пропиткой носителя из альфа-оксида алюминия водным раствором комплекса оксалата Ag с этилендиамином; носитель представлял собой цилиндры с внешним диаметром 8 мм, высотой 8 мм и диаметром канала 5 мм. Раствор также содержал промотор - соль Cs. Катализатор прокаливали при температуре, достаточной для разложения комплекса серебра до металла. Полученный катализатор содержал 12% Ag и 500 м.д. Cs. Этот катализатор использовали во всех примерах, приведенных ниже.

Катализатор тестировали, загружая 9 г в трубчатый реактор из нержавеющей стали, который нагревали на бане с расплавом соли. Через катализатор пропускали смесь газов, содержащую 15% этилена, 7% кислорода и 78% инертного газа, в основном азота и диоксида углерода, при давлении 300 фунт/кв. дюйм. Температуру реакции устанавливали таким образом, чтобы получить производительность по этиленоксиду 160 кг/час на 1 м3 катализатора. Активность катализатора оставалась стабильной и после недели работы, и рассчитанная селективность образования этиленоксида составляла 83.3%.

Пример 2 (сравнительный)

Цель этого примера - определение деструктивного влияния активной поверхности носителя на получение этиленоксида.

Такую же навеску катализатора 9 г загружали в реакционную трубку из нержавеющей стали. В этом примере добавляли 2 г того же носителя оксида алюминия, который использовали при приготовлении катализатора, смешивали с катализатором. Носитель помещали в верхней трети реакционной трубки. Катализатор работал стабильно и спустя неделю работы, и рассчитанная селективность образования этиленоксида составляла 81.9%.

Пример 3

100 г того же носителя, который использовали для приготовления катализатора и в котором концентрация Na на поверхности составляла 90 м.д., промывали 500 мл 0.3 N водным раствором гидроксида аммония. Раствор отделяли и промывку повторяли четыре раза. Затем носитель дважды промывали деионизированной водой и сушили при 150°С. Анализ растворов показал, что общее количество натрия, удаленного с поверхности носителя, составило 55 м.д. Насеску 9 г катализатора помещали в реакционную трубку из нержавеющей стали. В этом примере добавляли также 2 г промытого носителя. Носитель помещали в верхней трети слоя.

Через неделю работы активность катализатора оставалась стабильной, и рассчитанная селективность образования этиленоксида составляла 80.3%. Это показывает, что удаление части натрия с поверхности промывкой раствором гидроксида аммония увеличило деструктивную способность носителя.

Пример 4

100 г носителя, который использовали для приготовления катализатора, пропитывали 300 мл 0.05 N водного раствора гидроксида цезия. Носитель сушили и анализировали на содержание Cs с помощью теста кислотного выщелачивания. Носитель содержал 300 м.д. Cs.

9 г катализатора помещали в реакционную трубку из нержавеющей стали. В этом примере добавляли также 2 г обработанного Cs носителя. Носитель располагали в верхней трети слоя, как в примере 3. Через неделю работы активность катализатора оставалась стабильной, и рассчитанная селективность образования этиленоксида составляла 83.3%. Это показывает, что обработка цезием привела к нейтрализации деструктивных активных центров на поверхности носителя и существенному увеличению выхода этиленоксида.

Пример 5

Образец носителя обрабатывали 300 мл 0.05 N водного раствора карбоната цезия. После такой обработки анализ показал, что носитель содержал 570 м.д. цезия. 2 г такого обработанного носителя добавляли в слой катализатора, как и в предыдущих примерах. Через неделю работы активность катализатора оставалась стабильной, и рассчитанная селективность образования этиленоксида составляла 83.2%. Это показывает, что обработка Cs привела к нейтрализации деструктивных активных центров на поверхности носителя.

Примеры 6-8

Образцы носителя обрабатывали водными растворами гидроксидов Li, Na и К, как показано в примере 3. Обработанные носители затем анализировали на содержание выщелачиваемых металлов. 2 г образца каждого из обработанных носителей добавляли в отдельный реактор, содержащий 9 г серебряного катализатора. Через неделю работы активность трех катализаторов оставалась стабильной, и рассчитанная селективность образования этиленоксида составляла:

ПримерНосительСелективность на катализаторе, %6носитель α-оксид алюминия, обработанный NaOH (150 м.д. Na)83.47носитель α-оксид алюминия, обработанный КОН (260 м.д. К)83.28носитель α-оксид алюминия, обработанный LiOH (50 м.д. Li)83.2

Это показывает, что в каждом из трех случаев обработка щелочным металлом приводила к нейтрализации деструктивных активных центров на поверхности носителя.

Похожие патенты RU2335498C2

название год авторы номер документа
КАТАЛИЗАТОР ОКИСЛЕНИЯ ЭТИЛЕНА 2004
  • Ризкалла Набил
RU2331474C2
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА СИНТЕЗА ЭТИЛЕНОКСИДА 2004
  • Ризкалла Набил
RU2331477C2
КАТАЛИЗАТОРЫ ДЛЯ ПОЛУЧЕНИЯ АЛКИЛЕНОКСИДОВ, ИМЕЮЩИЕ УЛУЧШЕННУЮ СТАБИЛЬНОСТЬ, ЭФФЕКТИВНОСТЬ И/ИЛИ АКТИВНОСТЬ 2004
  • Серафин Джулиана Г.
  • Лю Альберт Чэн-Юй
  • Сейедмонир Сейед Р.
  • Су Хваили
  • Шимански Томас
RU2360735C2
НОСИТЕЛЬ, СОДЕРЖАЩИЙ МУЛЛИТ, ДЛЯ КАТАЛИЗАТОРОВ ДЛЯ ПОЛУЧЕНИЯ ЭТИЛЕНОКСИДА 2009
  • Пак Сергей
  • Рокицки Анджей
  • Кавабата Судзи
RU2495715C2
КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ ЭТИЛЕНОКСИДА 2003
  • Ризкала Набил
  • Борнн Эррол
  • Цулауф Чарльз У.
RU2311958C2
СПОСОБ ПРИГОТОВЛЕНИЯ СЕРЕБРОСОДЕРЖАЩЕГО КАТАЛИЗАТОРА ДЛЯ ОКИСЛЕНИЯ ЭТИЛЕНА 1986
  • Госсе Воксхоорн[Nl]
  • Аан Клазинга[Nl]
  • Отто Менте Вельтхейс[Nl]
RU2007214C1
СПОСОБ ЗАПУСКА ЭПОКСИДИРОВАНИЯ 2010
  • Сакс Говард
  • Рокицки Анджей
RU2542978C2
СПОСОБ ПРИГОТОВЛЕНИЯ СЕРЕБРОСОДЕРЖАЩЕГО КАТАЛИЗАТОРА ДЛЯ ОКИСЛЕНИЯ ЭТИЛЕНА В ЭТИЛЕНОКСИД И СЕРЕБРОСОДЕРЖАЩИЙ КАТАЛИЗАТОР ДЛЯ ОКИСЛЕНИЯ ЭТИЛЕНА В ЭТИЛЕНОКСИД 1987
  • Госсе Боксхоорн[Nl]
RU2024301C1
СЕРЕБРЯННЫЙ КАТАЛИЗАТОР ДЛЯ ОКИСЛЕНИЯ ЭТИЛЕНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1987
  • Госсе Боксхоорн[Nl]
  • Аан Хендрик Клазинга[Nl]
RU2034648C1
КАТАЛИЗАТОРЫ, СОДЕРЖАЩИЕ СЕРЕБРО, ПОЛУЧЕНИЕ ТАКИХ КАТАЛИЗАТОРОВ И ИХ ПРИМЕНЕНИЕ 2004
  • Матуш Марек
  • Ричард Майкл Алан
  • Локмейер Джон Роберт
  • Бос Алауисиус Николас Рене
  • Рекерс Доминикус Мария
  • Рейналда Доналд
  • Йетс Рэндалл Клейтон
RU2342993C2

Реферат патента 2008 года СПОСОБ МОЛЕКУЛЯРНОГО ОКИСЛЕНИЯ ЭТИЛЕНА

Изобретение относится к способу молекулярного окисления этилена с образованием этиленоксида. В соответствии с изобретением этилен окисляют при контакте в условиях окисления со смесью гетерогенного катализатора в виде частиц и твердого инертного вещества в виде частиц обработанного солью щелочного металла. 2 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 335 498 C2

1. Способ молекулярного окисления этилена в присутствии гетерогенного катализатора окисления в виде частиц с образованием этиленоксида, заключающийся в окислении этилена при контакте со смесью гетерогенного катализатора окисления и твердого инертного вещества в виде частиц, обработанного солью щелочного металла.2. Способ по п.1, в котором инертным веществом в виде частиц является оксид алюминия.3. Способ по п.1, в котором катализатор окисления представляет собой серебро, нанесенное на оксид алюминия.

Документы, цитированные в отчете о поиске Патент 2008 года RU2335498C2

Бесколесный шариковый ход для железнодорожных вагонов 1917
  • Латышев И.И.
SU97A1
СПОСОБ ПОЛУЧЕНИЯ СЕРЕБРЯНОГО КАТАЛИЗАТОРА, СПОСОБ ПОЛУЧЕНИЯ ОКСИДА ЭТИЛЕНА И СПОСОБ АКТИВАЦИИ СЕРЕБРЯНОГО КАТАЛИЗАТОРА 1994
  • Нейбил Ризкалла
RU2133642C1
КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ ОКИСИ ЭТИЛЕНА 1992
  • Джоун Эдвард Баффам[Us]
  • Уильям Херман Джердис[Us]
  • Руф Мэри Ковалески[Us]
RU2014114C1

RU 2 335 498 C2

Авторы

Ризкалла Набил

Байс Виджей С.

Даты

2008-10-10Публикация

2004-11-09Подача