Изобретение относится к электрофизическим и электрохимическим способам обработки, в частности к электроэрозионному легированию.
Для придания поверхностному слою стали высокой твердости и износостойкости, для повышения границы контактной выносливости и границы выносливости при изгибе и скручивании используют способ цементации, состоящий в диффузионном насыщении поверхностного слоя стали углеродом при нагревании в соответствующей среде - карбюризаторе. Как правило, цементацию осуществляют при температурах, выше 930-950°С, когда стойкий аустенит, который растворяет углерод, присутствует в большом количестве. Конечные свойства цементируемые изделия приобретают в результате закаливания и низкого отпуска, выполняемых цементацией.
Для цементации обычно используют низкоуглеродистые (0,1-0,18%), чаще легированные стали. Для цементации крупногабаритных деталей применяют стали с более высоким содержанием углерода (0,2-03%). Выбор таких сталей необходим для того, чтобы сердцевина изделия, которая не насыщается углеродом при цементации, сохраняла высокую вязкость после закаливания [Лахтин Ю.М., Леонтьева В.П. Материаловедение. - М.: Машиностроение, 1990. - С.231].
Процесс закаливания изделий сопровождает образование в них значительных остаточных напряжений в результате неравномерного распределения температуры по сечению и неодинакового изменения объема разных зон. Из-за совместимого действия температурных и структурных напряжений в цементируемом слое возникают напряжения сжатия, а в сердцевине - напряжения растяжения. Остаточные напряжения вызывают деформации изделий, иногда достаточно значительные [Гаркунов Д.Н. Триботехника. - М.: Машиностроение, 1989. - 327 с.]. Кроме того, существенным недостатком способа являются необходимость защиты отдельных участков детали, не подлежащих упрочнению, специальными покрытиями, обмазками и др., высокая трудоемкость, себестоимость и длительность процесса.
Известен способ электроэрозионного легирования (ЭЭЛ) металлических поверхностей - процесс перенесения материала на обрабатываемую поверхность искровым электрическим разрядом. Способ имеет ряд специфических особенностей:
- возможно диффузионное обогащение поверхности катода (детали) составными элементами анода (легирующего электрода) без изменения размера детали;
- легирование можно осуществлять в строго указанных местах, не защищая при этом остальные поверхности детали;
- отсутствие объемного нагревания детали;
- простая технология ЭЭЛ металлических поверхностей, а необходимая аппаратура малогабаритна и транспортабельна. [Электроискровое легирование металлических поверхностей / Гитлевич А.Е., Михайлов В.В., Парканский Н.Я., Ревутский В.М. / Кишинев: Штинца, 1985, стр.4].
При ЭЭЛ графитовым электродом шероховатость формируемой поверхности по сравнению с легированием металлическим электродом изменяется незначительно, что при следующей механической обработке, например шлифовкой, позволяет использовать эти поверхности в парах трения.
Ближайшим к заявляемому изобретению является способ ЭЭЛ графитом армко-железа и стали У8, У9. Выявленные при этом микроструктуры белого и переходного слоев показали, что при ЭЭЛ стали графитом в сформированном слое имеются почти все структуры и фазы равновесовой диаграммы состояния железо-углерод, а также неравновесовые структуры и фазы, возникающие при термической обработке стали. Варьирование энергией разряда в диапазоне 0,036-6,4 Дж позволяет изменять величину слоев от 4-5 до 50-70 мкм [Электроискровое легирование металлических поверхностей / Гитлевич А.Е., Михайлов В.В., Парканский Н.Я., Ревутский В.М. / Кишинев: Штинца, 1985, стр.4, 64-65].
Недостатком указанного способа является небольшая толщина формирующихся слоев.
В основу изобретения поставлена задача создать способ цементации стальных деталей электроэрозионным легированием, который бы позволял повысить твердость и износостойкость поверхностного слоя деталей.
Поставленную задачу решают тем, что в способе цементации стальной детали электроэрозионным легированием графитовым электродом, включающем использование в качестве анода графитового электрода и в качестве катода стальной детали, согласно изобретению в качестве катода используют деталь из низкоуглеродистой легированной стали аустенитного класса, легирование осуществляют с производительностью 1,0-5,0 мин/см2 и энергией разряда 0,036-6,8 Дж и формируют легированные поверхностные слои толщиной от 4-5 до 320-350 мкм.
Использование в качестве материала катода низкоуглеродистых легированных сталей аустенитного класса и осуществление легирования с производительностью 1,0-5,0 мин/см и с формированием поверхностных слоев толщиной от 4-5 до 320-350 мкм позволяет повысить твердость и износостойкость поверхностного слоя деталей.
Выбор предельных значений энергии импульсов для легирования углеродом обусловлен природой взаимодействия с твердыми деформируемыми металлами.
Нижний предел энергии разряда ограничивается эффективностью способа. Увеличение энергии разряда выше верхнего предела при ЭЭЛ графитом так же, как и при увеличении производительности легирования более 5 мин/см2, приводит к увеличению количества углерода в поверхностном слое, его охрупчиванию и отрицательно влияет на формирование слоев, полученных электроэрозионным способом.
Способ цементации стальных деталей осуществляют электроэрозионным легированием углеродом (графитовым электродом). В качестве материала катода (детали) используют низкоуглеродистые легированные стали аустенитного класса. Легирование осуществляют с производительностью 1,0-5,0 мин/см2, что позволяет при варьировании энергии разряда в диапазоне 0,036-6,8 Дж формировать поверхностные слои повышенной твердости толщиной от 4-5 до 320-350 мкм.
Изобретение поясняется конкретным примером.
Проводились исследования поверхностных слоев, сформированных в результате ЭЭЛ углеродом, хромоникелевой коррозионной стали аустенитного класса марки 12Х18Н10Т. Результаты исследований приведены в таблице. Для сравнения в таблице приведены результаты шероховатости поверхности после легирования стали 12Х18Н10Т электродом из твердого сплава марки Т15К6.
** Минимальная твердость в нижнем участке слоя.
*** Максимальная твердость на поверхности слоя.
Предлагаемый способ может быть также использован и для среднеуглеродистых легированных сталей. Так, при ЭЭЛ углеродом среднеуглеродистой легированной стали 40Х с производительностью 5 мин/см2 при энергии разряда 6,8 Дж толщина слоя повышенной твердости составляла более 1,15 мм. Шероховатость поверхности при этом соответствовала 11,7-14,0 мкм.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЦЕМЕНТАЦИИ СТАЛЬНЫХ ДЕТАЛЕЙ ЭЛЕКТРОЭРОЗИОННЫМ ЛЕГИРОВАНИЕМ | 2011 |
|
RU2468899C1 |
СПОСОБ ОБРАБОТКИ ВКЛАДЫШЕЙ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ | 2005 |
|
RU2299791C1 |
СПОСОБ ПОВЫШЕНИЯ ИЗНОСОСТОЙКОСТИ СТАЛЬНЫХ ДЕТАЛЕЙ | 2019 |
|
RU2711074C1 |
СПОСОБ ЭЛЕКТРОЭРОЗИОННОГО ЛЕГИРОВАНИЯ ПОВЕРХНОСТИ СТАЛЬНОЙ ДЕТАЛИ И ЕГО ПРИМЕНЕНИЕ ДЛЯ ОРЕБРЕНИЯ ТРУБЫ ТЕПЛООБМЕННИКА | 2015 |
|
RU2615096C2 |
СПОСОБ ОБРАБОТКИ ВКЛАДЫШЕЙ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ | 2005 |
|
RU2299790C1 |
СПОСОБ УПРОЧНЕНИЯ ПОВЕРХНОСТЕЙ ТЕРМООБРАБОТАННЫХ СТАЛЬНЫХ ДЕТАЛЕЙ | 2015 |
|
RU2603932C1 |
СПОСОБ СУЛЬФОЦЕМЕНТАЦИИ СТАЛЬНЫХ ДЕТАЛЕЙ | 2018 |
|
RU2707776C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ НЕПОДВИЖНОГО СОЕДИНЕНИЯ ТИПА ВАЛ-СТУПИЦА СТАЛЬНЫХ ДЕТАЛЕЙ (ВАРИАНТЫ) | 2012 |
|
RU2501986C2 |
СПОСОБ УЛУЧШЕНИЯ ПРИРАБАТЫВАЕМОСТИ ПАРЫ ТРЕНИЯ "ВКЛАДЫШ ПОДШИПНИКА - ШЕЙКА ВАЛА" | 2012 |
|
RU2528070C2 |
СПОСОБ СУЛЬФОЦЕМЕНТАЦИИ СТАЛЬНЫХ ДЕТАЛЕЙ | 2016 |
|
RU2663799C2 |
Изобретение относится к электрофизическим и электрохимическим способам обработки, в частности способам цементации стальных деталей электроэрозионным легированием. Способ включает использование в качестве анода графитового электрода, а в качестве катода - детали из низкоуглеродистой легированной стали аустенитного класса. Легирование осуществляют с производительностью 1,0-5,0 мин/см2 и энергией разряда 0,036-6,8 Дж и формируют легированные поверхностные слои толщиной от 4-5 до 320-350 мкм. Технический результат - повышение твердости и износостойкости поверхностного слоя деталей. 1 табл.
Способ цементации стальной детали электроэрозионным легированием графитовым электродом, включающий использование в качестве анода графитового электрода и в качестве катода стальной детали, отличающийся тем, что в качестве катода используют деталь из низкоуглеродистой легированной стали аустенитного класса, легирование осуществляют с производительностью 1,0-5,0 мин/см2 и энергией разряда 0,036-6,8 Дж и формируют легированные поверхностные слои толщиной от 4-5 до 320-350 мкм.
ГИТЛЕВИЧ А.Е | |||
и др | |||
Электроискровое легирование металлических поверхностей | |||
- Кишинев: Штинца, 1985, с.4, 64-65 | |||
RU 2002821 C1, 15.11.1993 | |||
СПОСОБ ОБРАБОТКИ АЛЮМИНИЕВЫХ СПЛАВОВ | 2001 |
|
RU2185939C1 |
ЭЛЕКТРОДНЫЙ МАТЕРИАЛ ДЛЯ ЭЛЕКТРОИСКРОВОГО ЛЕГИРОВАНИЯ | 2000 |
|
RU2181646C2 |
Способ абразивного шлифования | 1987 |
|
SU1553296A1 |
Походная разборная печь для варки пищи и печения хлеба | 1920 |
|
SU11A1 |
Перекатываемый затвор для водоемов | 1922 |
|
SU2001A1 |
Авторы
Даты
2008-11-10—Публикация
2006-10-05—Подача