СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА НА ОСНОВЕ ТЕРМОРАСШИРЕННОГО ГРАФИТА (ВАРИАНТЫ) И МАТЕРИАЛ Российский патент 2008 года по МПК C01B31/04 

Описание патента на изобретение RU2337875C2

Группа изобретений относится к способам получения материалов на основе модифицированного терморасширенного графита (ТРГ), а также к составу самого материала и может быть использована в различных областях техники, в том числе как связующее основной и подштыревой анодных масс для алюминиевых электролизеров по методу Содерберга.

Уровень техники.

В настоящее время известно много способов модифицирования ТРГ и материалов на его основе. По способам введения модифицирующей добавки они делятся на две основные группы:

а) обработка (смешение, пропитка) модифицирующей добавкой окисленного графита (ОГ). Например, пропитка ОГ Н3РО4 или ее солями (GB 1504841), растворами Н3ВО3 (DE 2612296), растворами Na2MoO4 или Na2WO4 (GB 1596949); Fe3O4 (RU 2134155);

б) обработка (смешение, пропитка) модифицирующей добавкой ТРГ, например, водным раствором Н3ВО3 (FR 3033380), органическим связующим в растворе органического растворителя (GB 2144138), коллоидными растворами на основе двуокиси кремния или Si-органических соединений (FR 2413344) и, наконец, пропитка ТРГ, инертной по отношению к нему жидкостью, в частности водой (DE 3117567).

Наиболее близким техническим решением является способ, заключающийся в том, что в имеющий форму частиц расширенный графит с расширением по меньшей мере в 10 раз вводится представитель группы коллоидальных двуокиси кремния или кремнийорганических соединений до образования смеси, образованная смесь высушивается и затем термообрабатывается для активизации модифицирующей добавки. При этом в качестве коллоидной двуокиси кремния используется раствор с содержанием SiO2 от 10 до 30 мас.%. К массе графита добавляется масса коллоидного раствора в количестве 5-40% мас. Этот способ используется для формования изделий на основе ТРГ с улучшенными прочностными характеристиками и стойкостью против окисления (GB 2011361).

Все вышеописанные приемы и способы были разработаны и использованы на практике главным образом для улучшения физико-механических и физико-химических свойств гибких графитовых материалов, полученных прокаткой или прессованием порошка ТРГ.

Однако все известные технические решения не позволяют получить материал на основе модифицированного ТРГ с улучшенной адсорбционной и каталитической активностью.

Раскрытие изобретения.

Задачей изобретения является получение материала на основе ТРГ с модифицирующими добавками, обладающего повышенной электропроводностью и обеспечивающего увеличение выхода по углероду, приводящее к уменьшению выброса летучих газов, а также обладающего каталитическими и адсорбционными свойствами.

Поставленная задача решается способом изготовления материала на основе терморасширенного графита для электролизеров производства алюминия, включающим пропитку графита раствором, содержащим модифицирующую добавку, и термообработку для активизации модифицирующей добавки, в соответствии с которым осуществляют пропитку окисленного или терморасширенного графита коллоидным раствором метагидроокиси алюминия, затем осуществляют отделение твердой среды от дисперсной, сушку твердой среды и упомянутую термообработку.

В частных воплощениях изобретения поставленная задача решается способом, в соответствии с которым осуществляют пропитку окисленного графита при массовом соотношении окисленного графита к коллоидному раствору метагидроокиси как 1: (1 -2).

В других воплощениях изобретения осуществляют пропитку терморасширенного графита при массовом соотношении терморасширенного графита к коллоидному раствору метагидроокиси как 1: (50-100).

Возможно осуществлять пропитку коллоидным раствором с содержанием метагидроокиси алюминия в количестве 8-15 мас.% в пересчете на Al2O3.

Если осуществляют пропитку окисленного графита, то термообработку проводят при 300-850°С.

Если же осуществляют пропитку терморасширенного графита, то термообработку проводят при 300-500°С.

Поставленная задача также решается вариантом изобретения, в соответствии с которым в способе изготовления материала на основе терморасширенного графита для электролизеров производства алюминия, включающем пропитку графита раствором, содержащим модифицирующую добавку и термообработку, осуществляют пропитку окисленного или терморасширенного графита водным раствором соли алюминия, выбранной из группы, включающей нитрат, хлорид, сульфат алюминия, затем проводят осаждение метагидроокиси алюминия, отделение твердой среды от дисперсной, сушку твердой среды и упомянутую термообработку.

В частных воплощениях данного изобретения осаждение метагидроокиси алюминия проводят при температуре 70-90°С путем добавления раствора аммиака в количестве, достаточном для достижения рН 8-9 раствора.

Возможно осуществление пропитки окисленного графита при массовом соотношении окисленного графита к водному раствору соли алюминия как 1:(1 - 2).

В иных случаях возможно осуществление пропитки терморасширенного графита при массовом соотношении терморасширенного графита к водному раствору соли алюминия как 1:(50-100).

Целесообразно пропитку осуществлять водным раствором с содержанием соли алюминия в количестве 8-15 мас.% в пересчете на Al2O3.

Если проводят пропитку окисленного графита, то термообработку проводят при 300-850°С, что позволяет не только активизировать модифицирующую добавку, но и вспенить окисленный графит.

Если осуществляют пропитку терморасширенного графита, то термообработку проводят при 300-500°С.

Поставленная задача также решается материалом на основе терморасширенного графита для электролизеров производства алюминия, содержащим частицы терморасширенного графита и модифицирующей добавки, в соответствии с которым в качестве модифицирующей добавки он содержит γ - Al2O3 при следующем соотношении компонентов, мас.%:

γ-Al2O31-30Терморасширенный графитостальное

Материал может содержать частицы γ - Al2O3 с размером 2-10 мкм, равномерно распределенные среди частиц терморасширенного графита.

Материал может содержать частицы терморасширенного графита с расширением, по меньшей мере, 10 раз.

Материал также может дополнительно содержать 0,5-3,0 мас.% поверхностно-активных веществ.

Такой материал может быть использован в качестве добавки в связующее (каменноугольный пек), предназначенное для изготовления анодных масс производства алюминия, также целесообразно использовать его для приготовления подштыревой анодной массы.

Введение в пек материала на основе модифицированного ТРГ способствует возникновению новых полезных свойств связующего. В частности, благодаря введению модифицированного ТРГ в количестве 2-4 мас.% в каменноугольный пек он становится электропроводным, что в конечном итоге улучшает электропроводность самообжигающегося анода Содерберга.

Поскольку ТРГ обладает достаточно высокими сорбционными свойствами благодаря наличию у него развитой пористой структуры, в том числе канальных пор длиной в несколько десятков ангстремов и диаметром, соразмерным с диаметрами молекул большинства канцерогенных ПАУ (2-20А), содержащихся в каменноугольном пеке и выделяющихся при обжиге анодной массы, то введение ТРГ способствует уменьшению выброса смолистых веществ в процессе пиролиза связующего анодной массы.

ТРГ адсорбирует и удерживает молекулы ПАУ в температурном интервале 450-500°С, в результате чего с подъемом температуры низкомолекулярные соединения подвергаются процессу поликонденсации и не возгоняются.

Введение в состав γ-Al2O3 способствует реакции поликонденсацции (γ-Al2O3 катализирует реакцию поликонденсации ПАУ с непредельными углеродами). В результате такого воздействия большинство канцерогенных ПАУ может быть химически модифицировано в неканцерогенные путем увеличения количества ароматических циклов или присоединения алифатических групп.

Согласно настоящему изобретению предлагается способ получения ТРГ (для получения связующего для анодных масс электролизеров, например, с верхним токоподводом), предусматривающий предварительное смешивание частиц окисленного или расширенного графита с представителем группы соединений алюминия, в качестве которых используют коллоидные растворы метагидроокиси алюминия (бемита) (AlOOH), водные растворы солей алюминия: Al(NO3)3, Al2Cl3, Al2(SO4)3.

Смешивание проводят при комнатной температуре в течение 0,5-2,0 часов, после чего дисперсионная среда удаляется при нагреве (сушке) от комнатной температуры до 100-120°С.

При пропитке ОГ или ТРГ водными растворами солей алюминия в полученную смесь графита с растворами солей алюминия добавляют строго дозированное количество водного раствора аммиака с целью доведения рН раствора до 8-9. Температуру в реакционной ячейке поддерживают при 70-90°С. Данная обработка водным раствором аммиака при повышенной температуре приводит к объемному осаждению желеобразного метагидроксида алюминия (AlOOH) на дефектных частицах окисленного графита.

Далее, модифицированный таким образом окисленный или терморасширенный графит термообрабатываются. Термообработка, с одной стороны, осуществляется с целью активации модифицирующей добавки, которая происходит в интервале температур 300-500°С.Температура индивидуальна для каждой добавки. С другой стороны, термообработка окисленного графита, осуществляемая в интервале температур от 300 до 850°С, проводится и для его вспенивания и получения соответственно терморасширенного модифицированного графита. Выше 850°C происходит переход γ-Al2O3 в стабильную α-Al2O3 фазу, которая не обладает каталитической активностью.

При температуре термообработки осуществляется процесс разложения вышеуказанных соединений с образований γ-Al2O3. Например,

300-500°С

AlOOH→γ-Al2O32O

Образование активного мелкодисперсного γ-Al2O3 и его равномерное распределение по объему ТРГ достигается обработкой частиц исходного расширенного (в 100-300 раз) или окисленного графита, подвергаемого последующему расширению, растворами с содержанием метагидроокиси алюминия или его солей в количестве 8-15 мас.% в пересчете на Al2O3.

Пример 1.

Окисленный графит с насыпной плотностью 0,5 г/см3 с нитратной предысторией пропитывали коллоидным раствором метагидроокиси алюминия (AlOOH), содержащим 20 мас.% в пересчете на Al2O3 и интенсивно перемешивали в течение 5 минут. Массовое соотношение ОГ: раствор составляло 1:2. Давали смеси отстояться в течение 30 минут, после этого отделяли дисперсную среду на водоструйном насосе и высушивали полученный продукт при 100-110°С. Далее проводили термообработку для вспенивания при 600°С в течение 30 секунд. Модифицированный ТРГ исследовали методом РФА, химического анализа и микроскопически измеряли насыпную плотность.

Содержание γ - оксида алюминия в конечном продукте оценивали по формуле

Δm=(mпг* - mпг)/mпг · 100%,

mпг* - масса пенографита после обработки; mпг - масса пенографита до обработки.

Показано, что ТРГ содержит 2,5 мас.% γ - Al2O3, добавка равномерно распределена в массе ТРГ, имеет размер частиц γ - Al2O3 2-5 мкм. Насыпная плотность материала на основе модифицированного ТРГ составляла 0,05 г/см3.

Пример 2.

ТРГ со степенью расширения 200 раз (dп.г.- 0,007 г/см3) пропитывали водным раствором нитрата алюминия, содержащим 24% нитрата алюминия (8% в пересчете на Al2O3) и интенсивно перемешивали в течение 5 минут. Массовое соотношение ТРГ: раствор составляло 1:50. Затем в смесь при 90°С добавляли 1% раствор аммиака. По достижении рН раствора 9-10 происходило осаждение метагидроокиси алюминия на частицах графита. Смеси давали отстояться в течение 30 минут, после этого отделяли дисперсную среду на водоструйном насосе и высушивали полученный продукт при 100-110°С. Далее проводили термообработку при 300°С в течение 30 минут.

ТРГ содержит 17 мас.% γ - Al2O3, добавка равномерно распределена в массе ТРГ, имеет размер частиц γ - Al2O3 1 - 5 мкм. Насыпная плотность материала на основе модифицированного ТРГ составляла 0,1 г/см3.

Пример 3.

ТРГ со степенью расширения 200 раз (dпг - 0,005 г/см3) пропитывали водным раствором сульфата алюминия, содержащим 15% в пересчете на Al2O3 и интенсивно перемешивали в течение 5 минут. Массовое соотношение ТРГ: раствор составляло 1:100. Затем в смесь при 90°С добавляли 1% раствор аммиака до достижении рН раствора 8-9, в результате чего происходило осаждение метагидроокиси алюминия на частицах графита. Смеси давали отстояться в течение 40 минут, затем дисперсную среду удаляли на водоструйном насосе и высушивали полученный продукт при 110°С. Далее проводили термообработку при 300°С в течение 30 минут.

ТРГ содержит 30 мас.% γ - Al2O3, добавка равномерно распределена в массе ТРГ, имеет размер частиц γ - Al2O3 2-10 мкм. Насыпная плотность материала на основе модифицированного ТРГ составляла 0,02 г/см3.

Пример 4.

Терморасширенный графит с насыпной плотностью 0,010 г/см3 с нитратной предысторией пропитывали коллоидным раствором метагидроокиси алюминия (AlOOH), содержащим 8 мас.% метагидроокиси в пересчете на Al2O3 и интенсивно перемешивали в течение 5 минут. Массовое соотношение ОГ: раствор составляло 1:50. Давали смеси отстояться в течение 30 минут, после этого отделяли дисперсную среду на водоструйном насосе и высушивали полученный продукт при 100-110°С. Далее проводили термообработку при 300°С в течение 5 часов. Модифицированный ТРГ исследовали методом РФА, химического анализа и микроскопически, измеряли насыпную плотность.

Показано, что ТРГ содержит 1,0 мас.% γ - Al2O3, добавка равномерно распределена в массе ТРГ, имеет размер частиц γ - Al2O3 2-5 мкм. Насыпная плотность материала на основе модифицированного ТРГ составляла 0,15 г/см3.

Пример 5.

Терморасширенный графит с насыпной плотностью 0,002 г/см3 с нитратной предысторией пропитывали коллоидным раствором метагидроокиси алюминия (AlOOH), содержащим 15 мас.% метагидроокиси в пересчете на Al2O3 и интенсивно перемешивали в течение 5 минут. Массовое соотношение ОГ: раствор составляло 1:100. Давали смеси отстояться в течение 30 минут, после этого отделяли дисперсную среду на водоструйном насосе и высушивали полученный продукт при 100-110°С. Далее проводили термообработку при 500°С в течение 1 часа. Модифицированный ТРГ исследовали методом РФА, химического анализа и микроскопически, измеряли насыпную плотность.

Содержание γ - оксида алюминия в конечном продукте оценивали по формуле, приведенной в примере 1.

Показано, что ТРГ содержит 1,05 мас.% γ - Al2O3, добавка равномерно распределена в массе ТРГ, имеет размер частиц γ - Al2O3 2-5 мкм. Насыпная плотность материала на основе модифицированного ТРГ составляла 0,07 г/см3.

Пример 6.

Обработку проводили по примеру 1, однако массовое соотношение ОГ: раствор составляло 1:1, а термообработку для вспенивания проводили при 300°С в течение 10 минут. Модифицированный ТРГ исследовали методом РФА, химического анализа и микроскопически, измеряли насыпную плотность.

Показано, что ТРГ содержит 1,9 мас.% γ - Al2O3, добавка равномерно распределена в массе ТРГ, имеет размер частиц γ - Al2O3 2-5 мкм. Насыпная плотность графита составила 10 раз.

Пример 7.

Обработку проводили по примеру 6, однако термообработку для вспенивания проводили при 850°С в течение 30с.Модифицированный ТРГ исследовали методом РФА, химического анализа и микроскопически, измеряли насыпную плотность.

Показано, что ТРГ содержит 3,0 мас.% γ - Al2O3, добавка равномерно распределена в массе ТРГ, имеет размер частиц γ - Al2O3 2-5 мкм. Насыпная плотность материала на основе модифицированного ТРГ составляла 0,03 г/см3. Степень расширения составила 150 раз.

Пример 8.

Окисленный графит с плотностью 0,5 г/см3 пропитывали водным раствором хлорида алюминия, содержащим 25% в пересчете на Al2O3 и интенсивно перемешивали в течение 5 минут. Массовое соотношение ОГ: раствор составляло 1:1. Затем в смесь при 70°С добавляли 1% раствор аммиака до достижении рН раствора 8-9, в результате чего происходило осаждение метагидроокиси алюминия на частицах графита. Смеси давали отстояться в течение 40 минут, затем дисперсную среду удаляли на водоструйном насосе и высушивали полученный продукт при 110°С. Далее проводили термообработку для вспенивания при 850°С в течение 30 секунд. ТРГ содержал 7,5 мас.% γ - Al2O3, добавка равномерно распределена в массе ТРГ, имеет размер частиц γ - Al2O3 2-10 мкм. Насыпная плотность материала на основе модифицированного ТРГ составляла 0,03 г/см3, соответственно степень расширения составила 150 раз.

Пример 9.

Обработку осуществляли по примеру 8, но массовое соотношение ОГ: раствор составляло 1:2, а термообработку для вспенивания проводили при 300°С в течение 30 минут.

ТРГ содержал 4,2 мас.% γ - Al2O3, добавка равномерно распределена в массе ТРГ, имеет размер частиц γ - Al2O3 2-10 мкм. Насыпная плотность материала на основе модифицированного ТРГ составляла 0,05 г/см3, соответственно степень расширения составила 15 раз.

Далее полученный материал, представляющий собой ТРГ с частицами γ - Al2O3,смешивали в количестве 3% к весу пека с измельченным каменноугольным пеком (температура размягчения 85°С по методу кольца и шара) до образования гомогенной массы, нагревали до 210-250°С и выдерживали при этой температуре в течение 1,5 часов с получением связующего для изготовления анодной массы для анодов Содерберга.

Затем проводили испытания связующего.

Составы связующего для анодной массы и результаты испытаний представлены в таблице.

Как следует из таблицы, связующее характеризуется низким удельным электросопротивлением, большой величиной коксового остатка и приемлемой пористостью от 10 до 30%, что позволяет улучшить не только электропроводящие свойства анодных масс, но и уменьшить выброс летучих газов, что в итоге улучшит экологические условия производства алюминия.

Сорбционные свойства по отношению к ПАУ измеряли эксикаторным методом.

№п,пСвязующее для анодной массы с материалом на основе ТРГУдельное электросопротивление, Ом·смКоксовый остаток,%Пористость, %Сорбционная способность по отношению к ПАУ, мас.%1.По примеру 10,066010232.По примеру 20,086730153.По примеру 30,086220124.По примеру 40,086470185.По примеру 50,085850256.По примеру 60,096030127.По примеру 70,076970218.По примеру 80,085450249.По примеру 90,08567015

Похожие патенты RU2337875C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ УГЛЕРОДНЫХ МАТЕРИАЛОВ 2008
  • Селезнев Анатолий Николаевич
  • Афанасов Иван Михайлович
  • Свиридов Александр Афанасьевич
  • Сорокина Наталья Евгеньевна
  • Авдеев Виктор Васильевич
RU2377223C1
СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА НА ОСНОВЕ ОКИСЛЕННОГО ГРАФИТА ДЛЯ ЭЛЕКТРОЛИЗЕРОВ ПРОИЗВОДСТВА АЛЮМИНИЯ И МАТЕРИАЛ 2006
  • Авдеев Виктор Васильевич
  • Морозов Владимир Анатольевич
  • Сорокина Наталья Евгеньевна
  • Шорникова Ольга Николаевна
  • Никольская Ирина Викторовна
RU2336227C2
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО УГЛЕРОДНОГО ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА И МНОГОСЛОЙНЫЙ МАТЕРИАЛ 2010
  • Афанасов Иван Михайлович
  • Селезнев Анатолий Николаевич
  • Авдеев Виктор Васильевич
RU2427530C1
СПОСОБ ИЗГОТОВЛЕНИЯ ГРАФИТОВОЙ ФОЛЬГИ 2023
  • Филимонов Станислав Владимирович
  • Иванов Андрей Владимирович
  • Ефимов Дмитрий Васильевич
  • Пантюхин Михаил Леонидович
  • Муханов Владимир Анатольевич
  • Авдеев Виктор Васильевич
RU2811287C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА НА ОСНОВЕ ТЕРМИЧЕСКИ РАСШИРЕННОГО ГРАФИТА И СОРБЕНТ 2014
  • Иванов Андрей Владимирович
  • Максимова Наталья Владимировна
  • Шорникова Ольга Николаевна
  • Филимонов Станислав Владимирович
  • Малахо Артем Петрович
  • Авдеев Виктор Васильевич
RU2564354C1
СПОСОБ ИЗГОТОВЛЕНИЯ СВЯЗУЮЩЕГО ДЛЯ ПРОИЗВОДСТВА ЭЛЕКТРОДНЫХ МАТЕРИАЛОВ 2006
  • Авдеев Виктор Васильевич
  • Годунов Игорь Андреевич
  • Ионов Сергей Геннадьевич
  • Морозов Владимир Анатольевич
  • Афанасов Иван Михайлович
  • Саввин Станислав Николаевич
  • Кепман Алексей Валерьевич
  • Селезнев Анатолий Николаевич
  • Крюковский Василий Андреевич
RU2337895C2
СПОСОБ ПОЛУЧЕНИЯ ПЕНОГРАФИТА, МОДИФИЦИРОВАННОГО ОКСИДАМИ МЕТАЛЛОВ ТРИАДЫ ЖЕЛЕЗА, И ПЕНОГРАФИТ 2008
  • Шорникова Ольга Николаевна
  • Сорокина Наталья Евгеньевна
  • Авдеев Виктор Васильевич
  • Никольская Ирина Викторовна
RU2390512C2
ВЫСОКОТЕМПЕРАТУРНЫЙ УГЛЕГРАФИТОВЫЙ ТЕПЛОИЗОЛЯЦИОННЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2009
  • Сорокина Наталья Евгеньевна
  • Свиридов Александр Афанасьевич
  • Селезнев Анатолий Николаевич
  • Матвеев Андрей Трофимович
  • Авдеев Виктор Васильевич
  • Годунов Игорь Андреевич
  • Ионов Сергей Геннадьевич
RU2398738C1
СПОСОБ ПОЛУЧЕНИЯ ОКИСЛЕННОГО ГРАФИТА 2014
  • Юдина Татьяна Федоровна
  • Смирнов Николай Николаевич
  • Братков Илья Викторович
  • Ершова Татьяна Вениаминовна
  • Бейлина Наталия Юрьевна
  • Маянов Евгений Павлович
  • Елизаров Павел Геннадьевич
RU2561074C1
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОРАСШИРЕННОГО ГРАФИТА, ТЕРМОРАСШИРЕННЫЙ ГРАФИТ И ФОЛЬГА НА ЕГО ОСНОВЕ 2011
  • Сорокина Наталья Евгеньевна
  • Малахо Артем Петрович
  • Филимонов Станислав Владимирович
  • Авдеев Виктор Васильевич
  • Годунов Игорь Андреевич
RU2472701C1

Реферат патента 2008 года СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА НА ОСНОВЕ ТЕРМОРАСШИРЕННОГО ГРАФИТА (ВАРИАНТЫ) И МАТЕРИАЛ

Группа изобретений может быть использована при изготовлении анодных масс для алюминиевых электролизеров. Окисленный графит пропитывают раствором, содержащим модифицирующую добавку, в качестве которой используют коллоидный раствор метагидроокиси алюминия. По другому варианту окисленный графит пропитывают водным раствором соли алюминия, выбранной из группы, включающей нитрат, хлорид, сульфат алюминия. Затем осаждают метагидроокись алюминия при температуре 70-90°С путем добавления раствора аммиака в количестве, достаточном для достижения рН раствора 8-9. Массовое соотношение окисленного графита к раствору модифицирующей добавки составляет 1:(1-2). Массовое соотношение терморасширенного графита к раствору модифицирующей добавки 1:(50-100). Твердую среду отделяют от дисперсной, сушат и термообрабатывают при 300-850°С. Полученный материал на основе терморасширенного графита содержит 1-30 мас.% γ - А120з и частицы терморасширенного графита - остальное, имеет улучшенную адсорбционную и каталитическую активность, 3 н. и 13 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 337 875 C2

1. Способ изготовления материала на основе терморасширенного графита для электролизеров производства алюминия, включающий пропитку графита раствором, содержащим модифицирующую добавку, и термообработку, отличающийся тем, что осуществляют пропитку окисленного или терморасширенного графита коллоидным раствором метагидроокиси алюминия, затем осуществляют отделение твердой среды от дисперсной, сушку твердой среды и упомянутую термообработку.2. Способ по п.1, отличающийся тем, что осуществляют пропитку окисленного графита при массовом соотношении окисленного графита к коллоидному раствору метагидроокиси как 1:(1-2).3. Способ по п.1, отличающийся тем, что осуществляют пропитку терморасширенного графита при массовом соотношении терморасширенного графита к коллоидному раствору метагидроокиси как 1:(50-100).4. Способ по п.1, отличающийся тем, что осуществляют пропитку коллоидным раствором с содержанием метагидроокиси алюминия в количестве 8-15 мас.% в пересчете на Al2O3.5. Способ по п.1, отличающийся тем, что осуществляют пропитку окисленного графита, а термообработку проводят при 300-850°С.6. Способ по п.1, отличающийся тем, что осуществляют пропитку терморасширенного графита, а термообработку проводят при 300-500°С.7. Способ изготовления материала на основе терморасширенного графита для электролизеров производства алюминия, включающий пропитку графита раствором, содержащим модифицирующую добавку, и термообработку, отличающийся тем, что осуществляют пропитку окисленного или терморасширенного графита водным раствором соли алюминия, выбранной из группы, включающей нитрат, хлорид, сульфат алюминия, затем проводят осаждение метагидроокиси алюминия, отделение твердой среды от дисперсной, сушку твердой среды и упомянутую термообработку.8. Способ по п.7, отличающийся тем, что осаждение метагидроокиси алюминия проводят при температуре 70-90°С путем добавления раствора аммиака в количестве, достаточном для достижения рН раствора 8-9.9. Способ по п.7, отличающийся тем, что осуществляют пропитку окисленного графита при массовом соотношении окисленного графита к водному раствору соли алюминия как 1:(1-2).10. Способ по п.7, отличающийся тем, что осуществляют пропитку терморасширенного графита при массовом соотношении терморасширенного графита к водному раствору соли алюминия как 1:(50-100).11. Способ по п.7, отличающийся тем, что пропитку осуществляют водным раствором с содержанием соли алюминия в количестве 8-15 мас.% в пересчете на Al2O3.12. Способ по п.6, отличающийся тем, что осуществляют пропитку окисленного графита, а термообработку проводят при 300-850°С.13. Способ по п.6, отличающийся тем, что осуществляют пропитку терморасширенного графита, а термообработку проводят при 300-500°С.14. Материал на основе терморасширенного графита для электролизеров производства алюминия, содержащий частицы терморасширенного графита и модифицирующей добавки, отличающийся тем, что в качестве модифицирующей добавки он содержит γ - Al2O3 при следующем соотношении компонентов, мас.%:

γ-Al2O31-30Терморасширенный графитостальное.

15. Материал по п.1, отличающийся тем, что содержит частицы γ - Al2O3 с размером 2-10 мкм, равномерно распределенные среди частиц терморасширенного графита.16. Материал по п.1, отличающийся тем, что содержит частицы терморасширенного графита с расширением, по меньшей мере, 10 раз.

Документы, цитированные в отчете о поиске Патент 2008 года RU2337875C2

ЩЕТКА ДЛЯ ОЧИСТКИ ПОВЕРХНОСТЕЙ 1991
  • Рахманов Николай Николаевич
RU2011361C1
US 3323869 А, 06.06.1967
Электролит для получения вспученного графита 1988
  • Юдина Татьяна Федоровна
  • Уварова Галина Александровна
  • Романюха Алексей Михайлович
  • Заяц Николай Николаевич
  • Вильчинский Юрий Михайлович
  • Уронов Николай Анатольевич
SU1609744A1
СПОСОБ ПОЛУЧЕНИЯ ОКИСЛЕННОГО ГРАФИТА 1996
  • Авдеев В.В.
  • Мартынов И.Ю.
  • Никольская И.В.
  • Монякина Л.А.
  • Денисов А.К.
  • Логинов Н.Д.
  • Сеземин В.А.
RU2089495C1
US 4146401 А, 27.03.1979
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Видоизменение прибора для получения стереоскопических впечатлений от двух изображений различного масштаба 1919
  • Кауфман А.К.
SU54A1
Устройство для охлаждения водою паров жидкостей, кипящих выше воды, в применении к разделению смесей жидкостей при перегонке с дефлегматором 1915
  • Круповес М.О.
SU59A1

RU 2 337 875 C2

Авторы

Авдеев Виктор Васильевич

Годунов Игорь Андреевич

Ионов Сергей Геннадьевич

Морозов Владимир Анатольевич

Сорокина Наталья Евгеньевна

Шорникова Ольга Николаевна

Никольская Ирина Викторовна

Лешин Вадим Сергеевич

Даты

2008-11-10Публикация

2006-10-24Подача